Citation: |
[1] |
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math., 17 (1964), 35-92.doi: 10.1002/cpa.3160170104. |
[2] |
Y. Amirat, K. Hamdache and F. Murat, Global weak solutions to the equations of motion for magnetic fluids, J. Math. Fluid Mech., 10 (2008), 326-351.doi: 10.1016/j.matpur.2009.01.015. |
[3] |
Y. Amirat and K. Hamdache, Global weak solutions to a ferrofluid flow model, Math. Meth. Appl. Sci., 31 (2007), 123-151.doi: 10.1002/mma.896. |
[4] |
C. Amrouche and N. Seloula, On the Stokes equations with the Navier-type boundary conditions, Differ. Equ. & Appl., 3 (2011), 581-607.doi: dx.doi.org/10.7153/dea-03-36. |
[5] |
F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, vol. 183, Springer, 2013.doi: 10.1007/978-1-4614-5975-0. |
[6] |
L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rendiconti del Seminario Matematico della Universit\`a di Padova, 31 (1961), 308-340.doi: http://eudml.org/doc/107065. |
[7] |
P. G. Ciarlet, Mathematical Elasticity, North-Holland, Amsterdam/New York, 1988.doi: 044481776X,9780444817761. |
[8] |
R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 5, Masson, 1984. |
[9] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I. Linearized Steady Problems, Springer tracts in Natural Philosophy, 38, Springer Verlag, New-York, 1994.doi: 10.1007/978-1-4612-5364-8. |
[10] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. II. Nonlinear Steady Problems, Springer tracts in Natural Philosophy, 39, Springer Verlag, 1994.doi: 10.1007/978-1-4612-5364-8. |
[11] |
G. D. Gaspari, Bloch equation for conduction-electron spin resonance, Phys. Review, 131 (1966), 215-219.doi: http://dx.doi.org/10.1103/PhysRev.151.215. |
[12] |
J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villars, 1969. |
[13] |
Q. Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, Applications of magnetic nonoparticles in biomedicine, J. Phys. D: Appl. Phys., 36 (2003), R167-R181. |
[14] |
C. Rinaldi and M. Zahn, Effects of spin viscosity on ferrofluids flow profiles in alternating and rotating magnetic fields, Phys. of Fluids, 14 (2002), 2847-2870.doi: http://dx.doi.org/10.1063/1.1485762. |
[15] |
R. E. Rosensweig, Ferrohydrodynamics, Dover Publications, Inc., 1997. |
[16] |
R. E. Rosensweig, Basic equations for magnetic fluids with internal rotations, in Ferrofluids: Magnetically Controllable Fluids and Their Applications, Lecture Notes in Physics (Springer-Verlag, Heidelberg), 594, S. Odenbache Ed., (2002), 61-84. |
[17] |
P. Shi and S. Wright, $W^{2,p}$ Regularity of the displacement problem for the Lamé system on $W^{2,s}$ domains, J. Math. Anal. Appl., 239 (1999), 291-305.doi: 10.1006/jmaa.1999.6562. |
[18] |
M. I Shliomis, Effective viscosity of magnetic suspension, Sov. Phys. JETP, 44 (1972), 1291-1294. |
[19] |
M. I Shliomis, Retrospective and issues, in Ferrofluids: Magnetically Controllable Fluids and Their Applications, Lecture Notes in Physics (Springer-Verlag, Heidelberg), 594, S. Odenbache Ed., (2002), 85-111. |
[20] |
R. Temam, Navier-Stokes Equations, 3rd (revised) edition, Elsevier Science Publishers B.V., Amsterdam, 1984.doi: 0821827375,9780821827376. |
[21] |
H. C. Torrey, Bloch equations with diffusion terms, Phys. Rev., 104 (1956), 563-565. |
[22] |
M. Zahn, Magnetic fluid and nonoparticle applications to nanotechnology, Journal of Nanoparticle Research, 3 (2001), 73-78.doi: 10.1023/A:1011497813424. |