September  2017, 22(7): 2939-2969. doi: 10.3934/dcdsb.2017158

Minimization of carbon abatement cost: Modeling, analysis and simulation

1. 

School of Mathematical Sciences, Tongji University, 1239 Siping Rd, Yangpu Dist, Shanghai 200092, China

2. 

Department of Applied Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA

* Corresponding author

Received  September 2014 Revised  April 2017 Published  May 2017

Fund Project: This work is supported by National Natural Science Foundation of China (No. 11271287) and China Scholarship Council. Yang and Liang would like to thank the hospitalities of University of Notre Dame for their visiting where this work is partially carried out

In this paper, we consider a problem of minimizing the carbon abatement cost of a country. Two models are built within the stochastic optimal control framework based on two types of abatement policies. The corresponding HJB equations are deduced, and the existence and uniqueness of their classical solutions are established by PDE methods. Using parameters in the models obtained from real data, we carried out numerical simulations via semi-implicit method. Then we discussed the properties of the optimal policies and minimal costs. Our results suggest that a country needs to keep a relatively low economy and population growth rate and keep a stable economy in order to reduce the total carbon abatement cost. In the long run, it's better for a country to seek for more efficient carbon abatement techniques and an environmentally friendly way of economic development.

Citation: Xiaoli Yang, Jin Liang, Bei Hu. Minimization of carbon abatement cost: Modeling, analysis and simulation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2939-2969. doi: 10.3934/dcdsb.2017158
References:
[1]

F. Ackerman and R. Bueno, Use of McKinsey abatement cost curves for climate economics modeling, 2011. Available from: http://www.sei-international.org/mediamanager/documents/Publications/Climate/sei-workingpaperus-1102.pdf. Google Scholar

[2]

F. AckermanE. A. Stanton and R. Bueno, CRED: A new model for climate and development, Ecol. Econ., 85 (2013), 166-176.   Google Scholar

[3]

A. A. A. AlmihoubH. M. Mula and M. M. Rahman, Marginal abatement cost curves (MACCs): Important approaches to obtain (firm and sector) greenhouse gases (GHGs) reduction, Int. J. Econ. Financ., 5 (2013), 35-54.   Google Scholar

[4]

R. Belauar, A. Fahim and N. Touzi, Optimal production policy under the carbon emission market, 2011. Available from: http://www.math.fsu.edu/~fahim/carbon.pdf. Google Scholar

[5]

C. Böhringer and T. F. Rutherford, Combining bottom-up and top-down, Energ. Econ., 30 (2008), 574-596.   Google Scholar

[6]

R. CarmonaM. Fehr and J. Hinz, Optimal stochastic control and carbon price formation, SIAM J. Control. Optim., 48 (2009), 2168-2190.  doi: 10.1137/080736910.  Google Scholar

[7]

R. CarmonaM. FehrJ. Hinz and A. Porchet, Market design for emission trading schemes, SIAM Rev., 52 (2010), 403-452.  doi: 10.1137/080722813.  Google Scholar

[8]

U. Cetin and M. Verschuere, Pricing and hedging in carbon emissions markets, Int. J. Theor. Appl. Financ., 12 (2009), 949-967.  doi: 10.1142/S0219024909005531.  Google Scholar

[9]

M. Chamon and P. Mauro, Pricing growth-indexed bonds, J. Bank. Financ., 30 (2006), 3349-3366.   Google Scholar

[10]

Y. Chen, Second-order Parabolic Partial Differential Equation Beijing University Press, Beijing, 2003. Google Scholar

[11]

E. Commission, EU action against climate change: The EU emissions trading scheme, 2009. Available from: http://www.ab.gov.tr/files/ardb/evt/1_avrupa_birligi/1_6_raporlar/1_3_diger/environment/eu_emmissions_trading_scheme.pdf. Google Scholar

[12]

E. Commission, The EU emissions trading system (EU ETS), 2013. Available from: https://ec.europa.eu/clima/sites/clima/files/factsheet_ets_en.pdf. Google Scholar

[13]

P. CriquiS. Mima and L. Viguier, Marginal abatement costs of CO$_2$ emission reductions, geographical flexibility and concrete ceilings: An assessment using the POLES model, Energ. Policy, 27 (1999), 585-601.   Google Scholar

[14]

T. Dietz and E. A. Rosa, Effects of population and affluence on CO$_2$ emissions, P. Natl. Acad. Sci. USA, 94 (1997), 175-179.   Google Scholar

[15]

A. D. Ellerman and B. K. Buchner, The European Union Emissions Trading Scheme: Origins, allocation, and early results, REEP, 1 (2007), 66-87.   Google Scholar

[16]

A. D. Ellerman and A. Decaux, Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves, 1998. Available from: http://dspace.mit.edu/handle/1721.1/3608. Google Scholar

[17]

P. EnkvistT. Nauclér and J. Rosander, A cost curve for greenhouse gas reduction, McKinsey Quarterly, 1 (2007), 35-45.   Google Scholar

[18]

H. Fallman, Revision of the EU emissions trading system, Available from: http://ec.europa.eu/enterprise/sectors/chemicals/files/wg_7_8fer08/15fallmann_ets_en.pdf. Google Scholar

[19]

M. Fehr and J. Hinz, A quantitative approach to carbon price risk modeling, Available from: http://www.bbk.ac.uk/cfc/pdfs/conference\%20papers/Thurs/FehrHinz.pdf. Google Scholar

[20]

B. S. Fisher, N. Nakicenovic, K. Alfsen, J. C. Morlot, F. De La Chesnaye, J. Hourcade, K. Jiang, M. Kainuma, E. La Rovere, A. Matysek, A. Rana, K. Riahi, R. Richels, S. Rose, D. V. Vuuren and R. Warren, Issues Related to Mitigation in the Long-term Context In Climate Change 2007: Mitigation. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change [B. Metz, O. R. Davidson, P. R. Bosch, R. Dave and L. A. Meyer] Cambridge University Press, Cambridge, 2007. Google Scholar

[21]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions Springer-Verlag, New York, 1993.  Google Scholar

[22]

P. A. Forsyth and G. Labahn, Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance, 2007. Available from: https://cs.uwaterloo.ca/~paforsyt/hjb.pdf. Google Scholar

[23]

C. Hepburn, Carbon trading: A review of the Kyoto mechanisms, Annu. Rev. Environ. Resour., 32 (2007), 375-393.   Google Scholar

[24]

J. HourcadeM. JaccardC. Bataille and F. Ghersi, Hybrid modeling: New answers to old challenges, Energy J., 2 (2006), 1-11.   Google Scholar

[25]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations Lecture Notes in Mathematics, 2018, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18460-4.  Google Scholar

[26]

International Emissions Trading Association (IETA), The world’s carbon markets: A case study guide to emissions trading, 2013. Available from: http://www.edf.org/sites/default/files/EDF_IETA_Mexico_Case_Study_May_2013.pdf. Google Scholar

[27]

M. Jakob, Marginal costs and co-benefits of energy efficiency investments: the case of the Swiss residential sector, Energ. Policy, 34 (2006), 172-187.   Google Scholar

[28]

L. Jiang, Mathematical Modeling and Methods for Option Pricing Translated from the 2003 Chinese original by Canguo Li, World Scientific Publishing Co. , Inc. , River Edge, NJ, 2005. doi: 10.1142/5855.  Google Scholar

[29]

F. Kesicki, Marginal abatement cost curves for policy making--expert-based vs. model-based curves, P. IAEE Int. Conf., (2010), 1-19.   Google Scholar

[30]

F. Kesicki, Marginal abatement cost curves: Combining energy system modeling and decomposition analysis, Environ. Model. Assess., 18 (2013), 27-37.   Google Scholar

[31]

F. Kasicki and N. Strachan, Marginal abatement cost (MAC) curves: Confronting theory and practice, Environ. Sci. Policy, 14 (2011), 1195-1204.  doi: 10.1016/j.envsci.2011.08.004.  Google Scholar

[32]

G. Klepper and S. Peterson, Marginal abatement cost curves in general equilibrium: The influence of world energy prices, Resour. Energy Econ., 28 (2006), 1-23.   Google Scholar

[33]

S. KruseM. Meitner and M. Schröder, On the pricing of GDP-linked financial products, Appl. Financ. Econ., 15 (2005), 1125-1133.   Google Scholar

[34]

G. M. Lieberman, Second Order Parabolic Differential Equations World Scientific Publishing Co. Pte. Ltd. , Singapore, 1996. doi: 10.1142/3302.  Google Scholar

[35]

J. J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken and K. S. White, Climate Change 2001: Impacts, Adaption and Vulnerability Cambridge University Press, Cambridge, 2001. Google Scholar

[36]

J. Morris, S. Paltsev and J. Reilly, Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions: Results from the EPPA model, Environmental Modeling & Assessment, 17 (2012), 325-336. Available from: https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt164.pdf. doi: 10.1007/s10666-011-9298-7.  Google Scholar

[37]

S. C. MorrisG. A. Goldstein and V. M. Fthenakis, NEMS and MARKEL-MACRO models for energy-environmental-economic analysis: A comparison of the electricity and carbon reduction projections, Environ. Model. Assess., 7 (2002), 207-216.   Google Scholar

[38]

S. Pye, K. Flecher, A. Gardiner, T. Angelini, J. Greenleaf and T. Wiley, Review and update of UK abatement costs curves for the industrial, domestic and non-domestic sectors, 2008. Available from: http://www.theccc.org.uk/wp-content/uploads/2008/12/MACC-Energy-End-Use-Final-Report-v3.2.pdf. Google Scholar

[39]

N. Rivers and M. Jaccard, Useful models for simulating policies to induce technological change, Energ. Policy, 34 (2006), 2038-2047.  doi: 10.1016/j.enpol.2005.02.003.  Google Scholar

[40]

C. Schinckus, How to value GDP-linked collar bonds? An introductory perspective, Theor. Econ. Lett., 3 (2013), 152-155.  doi: 10.4236/tel.2013.33024.  Google Scholar

[41]

Q. Song, Convergence of Markov chain approximation on generalized HJB equation and its applications, Automatica, 44 (2008), 761-766.  doi: 10.1016/j.automatica.2007.07.014.  Google Scholar

[42]

F. Teng and S. Xu, Definition of Business as Usual and its impacts on assessment of mitigation efforts, Adv. Clim. Change Res., 3 (2012), 212-219.   Google Scholar

[43]

A. Tsoularis and J. Wallace, Analysis of logistic growth models, Math. Biosci., 179 (2002), 21-55.  doi: 10.1016/S0025-5564(02)00096-2.  Google Scholar

[44]

J. Wang and P. A. Forsyth, Maximal use of central differencing for Hamilton-Jacobi-Bellman PDEs in finance, SIAM J. Numer. Anal., 46 (2008), 1580-1601.  doi: 10.1137/060675186.  Google Scholar

[45]

K. WangC. Wang and J. Chen, Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change, Energ. Policy, 37 (2009), 2930-2940.   Google Scholar

[46]

X. Yang and J. Liang, Minimization of the national cost due to carbon emission, Systems Eng. Theor. Pract., 34 (2014), 640-647.   Google Scholar

[47]

E. Zagheni and F. Billari, A cost valuation model based on a stochastic representation of the IPAT equation, Popul. Environ., 29 (2007), 68-82.  doi: 10.1007/s11111-008-0061-1.  Google Scholar

show all references

References:
[1]

F. Ackerman and R. Bueno, Use of McKinsey abatement cost curves for climate economics modeling, 2011. Available from: http://www.sei-international.org/mediamanager/documents/Publications/Climate/sei-workingpaperus-1102.pdf. Google Scholar

[2]

F. AckermanE. A. Stanton and R. Bueno, CRED: A new model for climate and development, Ecol. Econ., 85 (2013), 166-176.   Google Scholar

[3]

A. A. A. AlmihoubH. M. Mula and M. M. Rahman, Marginal abatement cost curves (MACCs): Important approaches to obtain (firm and sector) greenhouse gases (GHGs) reduction, Int. J. Econ. Financ., 5 (2013), 35-54.   Google Scholar

[4]

R. Belauar, A. Fahim and N. Touzi, Optimal production policy under the carbon emission market, 2011. Available from: http://www.math.fsu.edu/~fahim/carbon.pdf. Google Scholar

[5]

C. Böhringer and T. F. Rutherford, Combining bottom-up and top-down, Energ. Econ., 30 (2008), 574-596.   Google Scholar

[6]

R. CarmonaM. Fehr and J. Hinz, Optimal stochastic control and carbon price formation, SIAM J. Control. Optim., 48 (2009), 2168-2190.  doi: 10.1137/080736910.  Google Scholar

[7]

R. CarmonaM. FehrJ. Hinz and A. Porchet, Market design for emission trading schemes, SIAM Rev., 52 (2010), 403-452.  doi: 10.1137/080722813.  Google Scholar

[8]

U. Cetin and M. Verschuere, Pricing and hedging in carbon emissions markets, Int. J. Theor. Appl. Financ., 12 (2009), 949-967.  doi: 10.1142/S0219024909005531.  Google Scholar

[9]

M. Chamon and P. Mauro, Pricing growth-indexed bonds, J. Bank. Financ., 30 (2006), 3349-3366.   Google Scholar

[10]

Y. Chen, Second-order Parabolic Partial Differential Equation Beijing University Press, Beijing, 2003. Google Scholar

[11]

E. Commission, EU action against climate change: The EU emissions trading scheme, 2009. Available from: http://www.ab.gov.tr/files/ardb/evt/1_avrupa_birligi/1_6_raporlar/1_3_diger/environment/eu_emmissions_trading_scheme.pdf. Google Scholar

[12]

E. Commission, The EU emissions trading system (EU ETS), 2013. Available from: https://ec.europa.eu/clima/sites/clima/files/factsheet_ets_en.pdf. Google Scholar

[13]

P. CriquiS. Mima and L. Viguier, Marginal abatement costs of CO$_2$ emission reductions, geographical flexibility and concrete ceilings: An assessment using the POLES model, Energ. Policy, 27 (1999), 585-601.   Google Scholar

[14]

T. Dietz and E. A. Rosa, Effects of population and affluence on CO$_2$ emissions, P. Natl. Acad. Sci. USA, 94 (1997), 175-179.   Google Scholar

[15]

A. D. Ellerman and B. K. Buchner, The European Union Emissions Trading Scheme: Origins, allocation, and early results, REEP, 1 (2007), 66-87.   Google Scholar

[16]

A. D. Ellerman and A. Decaux, Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves, 1998. Available from: http://dspace.mit.edu/handle/1721.1/3608. Google Scholar

[17]

P. EnkvistT. Nauclér and J. Rosander, A cost curve for greenhouse gas reduction, McKinsey Quarterly, 1 (2007), 35-45.   Google Scholar

[18]

H. Fallman, Revision of the EU emissions trading system, Available from: http://ec.europa.eu/enterprise/sectors/chemicals/files/wg_7_8fer08/15fallmann_ets_en.pdf. Google Scholar

[19]

M. Fehr and J. Hinz, A quantitative approach to carbon price risk modeling, Available from: http://www.bbk.ac.uk/cfc/pdfs/conference\%20papers/Thurs/FehrHinz.pdf. Google Scholar

[20]

B. S. Fisher, N. Nakicenovic, K. Alfsen, J. C. Morlot, F. De La Chesnaye, J. Hourcade, K. Jiang, M. Kainuma, E. La Rovere, A. Matysek, A. Rana, K. Riahi, R. Richels, S. Rose, D. V. Vuuren and R. Warren, Issues Related to Mitigation in the Long-term Context In Climate Change 2007: Mitigation. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change [B. Metz, O. R. Davidson, P. R. Bosch, R. Dave and L. A. Meyer] Cambridge University Press, Cambridge, 2007. Google Scholar

[21]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions Springer-Verlag, New York, 1993.  Google Scholar

[22]

P. A. Forsyth and G. Labahn, Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance, 2007. Available from: https://cs.uwaterloo.ca/~paforsyt/hjb.pdf. Google Scholar

[23]

C. Hepburn, Carbon trading: A review of the Kyoto mechanisms, Annu. Rev. Environ. Resour., 32 (2007), 375-393.   Google Scholar

[24]

J. HourcadeM. JaccardC. Bataille and F. Ghersi, Hybrid modeling: New answers to old challenges, Energy J., 2 (2006), 1-11.   Google Scholar

[25]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations Lecture Notes in Mathematics, 2018, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18460-4.  Google Scholar

[26]

International Emissions Trading Association (IETA), The world’s carbon markets: A case study guide to emissions trading, 2013. Available from: http://www.edf.org/sites/default/files/EDF_IETA_Mexico_Case_Study_May_2013.pdf. Google Scholar

[27]

M. Jakob, Marginal costs and co-benefits of energy efficiency investments: the case of the Swiss residential sector, Energ. Policy, 34 (2006), 172-187.   Google Scholar

[28]

L. Jiang, Mathematical Modeling and Methods for Option Pricing Translated from the 2003 Chinese original by Canguo Li, World Scientific Publishing Co. , Inc. , River Edge, NJ, 2005. doi: 10.1142/5855.  Google Scholar

[29]

F. Kesicki, Marginal abatement cost curves for policy making--expert-based vs. model-based curves, P. IAEE Int. Conf., (2010), 1-19.   Google Scholar

[30]

F. Kesicki, Marginal abatement cost curves: Combining energy system modeling and decomposition analysis, Environ. Model. Assess., 18 (2013), 27-37.   Google Scholar

[31]

F. Kasicki and N. Strachan, Marginal abatement cost (MAC) curves: Confronting theory and practice, Environ. Sci. Policy, 14 (2011), 1195-1204.  doi: 10.1016/j.envsci.2011.08.004.  Google Scholar

[32]

G. Klepper and S. Peterson, Marginal abatement cost curves in general equilibrium: The influence of world energy prices, Resour. Energy Econ., 28 (2006), 1-23.   Google Scholar

[33]

S. KruseM. Meitner and M. Schröder, On the pricing of GDP-linked financial products, Appl. Financ. Econ., 15 (2005), 1125-1133.   Google Scholar

[34]

G. M. Lieberman, Second Order Parabolic Differential Equations World Scientific Publishing Co. Pte. Ltd. , Singapore, 1996. doi: 10.1142/3302.  Google Scholar

[35]

J. J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken and K. S. White, Climate Change 2001: Impacts, Adaption and Vulnerability Cambridge University Press, Cambridge, 2001. Google Scholar

[36]

J. Morris, S. Paltsev and J. Reilly, Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions: Results from the EPPA model, Environmental Modeling & Assessment, 17 (2012), 325-336. Available from: https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt164.pdf. doi: 10.1007/s10666-011-9298-7.  Google Scholar

[37]

S. C. MorrisG. A. Goldstein and V. M. Fthenakis, NEMS and MARKEL-MACRO models for energy-environmental-economic analysis: A comparison of the electricity and carbon reduction projections, Environ. Model. Assess., 7 (2002), 207-216.   Google Scholar

[38]

S. Pye, K. Flecher, A. Gardiner, T. Angelini, J. Greenleaf and T. Wiley, Review and update of UK abatement costs curves for the industrial, domestic and non-domestic sectors, 2008. Available from: http://www.theccc.org.uk/wp-content/uploads/2008/12/MACC-Energy-End-Use-Final-Report-v3.2.pdf. Google Scholar

[39]

N. Rivers and M. Jaccard, Useful models for simulating policies to induce technological change, Energ. Policy, 34 (2006), 2038-2047.  doi: 10.1016/j.enpol.2005.02.003.  Google Scholar

[40]

C. Schinckus, How to value GDP-linked collar bonds? An introductory perspective, Theor. Econ. Lett., 3 (2013), 152-155.  doi: 10.4236/tel.2013.33024.  Google Scholar

[41]

Q. Song, Convergence of Markov chain approximation on generalized HJB equation and its applications, Automatica, 44 (2008), 761-766.  doi: 10.1016/j.automatica.2007.07.014.  Google Scholar

[42]

F. Teng and S. Xu, Definition of Business as Usual and its impacts on assessment of mitigation efforts, Adv. Clim. Change Res., 3 (2012), 212-219.   Google Scholar

[43]

A. Tsoularis and J. Wallace, Analysis of logistic growth models, Math. Biosci., 179 (2002), 21-55.  doi: 10.1016/S0025-5564(02)00096-2.  Google Scholar

[44]

J. Wang and P. A. Forsyth, Maximal use of central differencing for Hamilton-Jacobi-Bellman PDEs in finance, SIAM J. Numer. Anal., 46 (2008), 1580-1601.  doi: 10.1137/060675186.  Google Scholar

[45]

K. WangC. Wang and J. Chen, Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change, Energ. Policy, 37 (2009), 2930-2940.   Google Scholar

[46]

X. Yang and J. Liang, Minimization of the national cost due to carbon emission, Systems Eng. Theor. Pract., 34 (2014), 640-647.   Google Scholar

[47]

E. Zagheni and F. Billari, A cost valuation model based on a stochastic representation of the IPAT equation, Popul. Environ., 29 (2007), 68-82.  doi: 10.1007/s11111-008-0061-1.  Google Scholar

Figure 1.  Plots and ACFs of ln(GDP) and differentiated ln(GDP)
Figure 2.  MAC curve for China and comparison of fitting results
Figure 7.  Relationship between carbon emission, time and minimal cost
Figure 3.  Relationship between $\ln(\epsilon)$ and $\ln{N}$
Figure 4.  Relationship between carbon emission, time and optimal policy
Figure 5.  Relationship between optimal policy and parameters
Figure 6.  Relationship between optimal policy, policy boundary and upper bound
Figure 8.  Relationship between minimal cost and parameters
Figure 9.  Relationship between minimal cost and upper bound for policy
Figure 10.  Relationship between optimal policy and technical parameters
Figure 11.  Relationship between minimal cost and technical parameters
Table 1.  Fitting results: parabolic model VS CRED model
Methodm1m2R2
parabolic0.01150.01620.9928
CRED0.21427.67880.9342
Methodm1m2R2
parabolic0.01150.01620.9928
CRED0.21427.67880.9342
[1]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[2]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[3]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[4]

Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 605-615. doi: 10.3934/nhm.2012.7.605

[5]

Silvia Faggian. Boundary control problems with convex cost and dynamic programming in infinite dimension part II: Existence for HJB. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 323-346. doi: 10.3934/dcds.2005.12.323

[6]

Dayi He, Xiaoling Chen, Qi Huang. Influences of carbon emission abatement on firms' production policy based on newsboy model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 251-265. doi: 10.3934/jimo.2016015

[7]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[8]

Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016

[9]

Shuren Liu, Qiying Hu, Yifan Xu. Optimal inventory control with fixed ordering cost for selling by internet auctions. Journal of Industrial & Management Optimization, 2012, 8 (1) : 19-40. doi: 10.3934/jimo.2012.8.19

[10]

Edoardo Mainini, Hideki Murakawa, Paolo Piovano, Ulisse Stefanelli. Carbon-nanotube geometries: Analytical and numerical results. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 141-160. doi: 10.3934/dcdss.2017008

[11]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[12]

Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637

[13]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[14]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[15]

Zhaohua Gong, Chongyang Liu, Yujing Wang. Optimal control of switched systems with multiple time-delays and a cost on changing control. Journal of Industrial & Management Optimization, 2018, 14 (1) : 183-198. doi: 10.3934/jimo.2017042

[16]

Seda İǧret Araz, Murat Subașı. On the optimal coefficient control in a heat equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020124

[17]

Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034

[18]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-29. doi: 10.3934/jimo.2019040

[19]

François James, Nicolas Vauchelet. One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 163-180. doi: 10.3934/nhm.2016.11.163

[20]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (22)
  • HTML views (24)
  • Cited by (0)

Other articles
by authors

[Back to Top]