• PDF
• Cite
• Share
Article Contents  Article Contents

# Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system

• * Corresponding author: R. Shivaji.
• In this paper we study the positive solutions to the $n\times n$ $p$-Laplacian system:

$\begin{equation*}\begin{cases}-\left(\varphi_{p_1}(u_1')\right)' = \lambda h_1(t) \left(u_1^{p_1-1-\alpha_1}+f_1(u_2)\right),\quad t\in (0,1),\\-\left(\varphi_{p_2}(u_2')\right)' = \lambda h_2(t) \left(u_2^{p_2-1-\alpha_2}+f_2(u_3)\right),\quad t\in (0,1),\\\quad\quad\quad\vdots\qquad\,\: =\quad\quad\quad\quad\quad\quad \vdots\\-\left(\varphi_{p_n}(u_n')\right)' = \lambda h_n(t) \left(u_n^{p_n-1-\alpha_n}+f_n(u_1)\right),~~\, t\in (0,1),\\\quad\,\,\,\, u_j(0)=0=u_j(1); ~~ j=1,2,\dots,n, \\ \end{cases}\end{equation*}$

where $\lambda$ is a positive parameter, $p_j>1$, $\alpha_j\in(0,p_j-1)$, $\varphi_{p_j}(w)=|w|^{p_j-2}w$, and $h_j \in C((0,1),(0, \infty))\cap L^1((0,1),(0,\infty))$ for $j=1,2,\dots,n$. Here $f_j:[0,\infty)\rightarrow[0,\infty)$, $j=1,2,\dots,n$ are nontrivial nondecreasing continuous functions with $f_j(0)=0$ and satisfy a combined sublinear condition at infinity. We discuss here a bifurcation result, an existence result for $\lambda>0$, and a multiplicity result for a certain range of $\lambda$. We establish our results through the method of sub-super solutions.

Mathematics Subject Classification: Primary: 34B16, 34B18; Secondary: 35J57.

 Citation: • • Figure 1.  Bifurcation of solution from the origin.

Figure 2.  Bifurcation for all $\lambda>0.$

Figure 3.  Multiplicity results for certain range of $\lambda$ .

• ## Article Metrics  DownLoad:  Full-Size Img  PowerPoint