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1

Introduction

Since the beginnings of Calculus, differential equations have provided an effec-
tive mathematical model for a wide variety of physical phenomena. Consider
a system whose state can be described by a finite number of real-valued pa-
rameters, say x = (x1, · · · , xn). If the rate of change ẋ = dx/dt is entirely
determined by the state x itself, then the evolution of the system can be
modelled by the ordinary differential equation

ẋ = g(x). (1.1)

If the state of the system is known at some initial time t0, the future behavior
for t > t0 can then be determined by solving a Cauchy problem, consisting of
(1.1) together with the initial condition

x(t0) = x0. (1.2)

We are here taking a spectator’s point of view: the mathematical model al-
lows us to understand a portion of the physical world and predict its future
evolution, but we have no means of altering its behavior in any way. Celestial
mechanics provides a typical example of this situation. We can accurately cal-
culate the orbits of moons and planets and exactly predict time and locations
of eclipses, but we cannot change them in the slightest amount.

Control theory provides a different paradigm. We now assume the pres-
ence of an external agent, i.e. a “controller”, who can actively influence the
evolution of the system. This new situation is modelled by a control system,
namely

ẋ = f(x, u), u(·) ∈ U (1.3)

where U is a family of admissible control functions. In this case, the rate of
change ẋ(t) depends not only on the state x itself, but also on some external
parameters, say u = (u1, · · · , um), which can also vary in time. The control
function u(·), subject to some constraints, will be chosen by a controller in
order to modify the evolution of the system and achieve certain preassigned
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goals — steer the system from one state to another, maximize the terminal
value of one of the parameters, minimize a certain cost functional, etc. . .

In a standard setting, we are given a set of control values U ⊂ IRm. The
family of admissible control functions is defined as

U .=
{

u : IR 7→ IRm ; u measurable, u(t) ∈ U for a.e. t
}

. (1.4)

The system (1.1) can then be written as a differential inclusion, namely

ẋ ∈ F (x) (1.5)

where the set of possible velocities is given by

F (x) .=
{
y ; y = f(x, u) for some u ∈ U

}
. (1.6)

Clearly, every admissible trajectory of the control system (1.3) is also a solu-
tion of (1.5). Under some regularity assumptions on f , it turns out that the
converse is also true: given any absolutely continuous trajectory t 7→ x(t) of
(1.5), one can select a measurable control function t 7→ u(t) ∈ U such that

ẋ(t) = f(x(t), u(t))

at almost every time t. Differential inclusions often provide a convenient ap-
proach for the analysis of control systems.

0 0
xx

Fig. 1.1. A differential equation vs. a differential inclusion.

Figure 1.1 illustrates the basic difference between an O.D.E and a differen-
tial inclusion. In the first case, we have a deterministic model: to each initial
state x0 there corresponds one single trajectory t 7→ x(t). On the other hand,
the evolution described by (1.5) is non-deterministic. Given an initial state
x0, several different trajectories t 7→ x(t) are possible.

Remark 1.1 Differential inclusions are sometimes used as non-deterministic
models, when the future behavior of a system cannot be predicted due to lack
of information. It should be clear, however, that is not the point of view of
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control theory. Here the non-determinacy reflects the possible different strate-
gies of a rational controller, who will make his choices in order to achieve a
specific goal.

The control law can be assigned in two basically different ways. In “open
loop” form, as a function of time: t 7→ u(t), and in “closed loop” or feedback,
as a function of the state: x 7→ u(x). Implementing an open loop control
u = u(t) is in a sense easier, since the only information needed is provided
by a clock, measuring time. On the other hand, to implement a closed loop
control u = u(x) one constantly needs to measure the state x of the system.

Designing a feedback control, however, yields some distinct advantages. In
particular, feedback controls can be more robust in the presence of random
perturbations. For example, assume that we seek a control u(·) which steers
the system from an initial state P to the origin. If the behavior of the system is
exactly described by (1.1), this can be achieved, say, by the open loop control
t 7→ u(t). In many practical situations, however, the evolution is influenced
by additional disturbances which cannot be predicted in advance. The actual
behavior of the system will thus be governed by

ẋ = f(x, u) + η(t), (1.7)

where t 7→ η(t) is a perturbation term. In this case, if the open loop control
u = u(t) steers the system (1.1) to the origin, this same control function may
not accomplish the same task in connection with (1.7), when a perturbation is
present. In Figure 1.2 (left) the solid line depicts the trajectory of the system
(1.1), while the dotted line illustrates a perturbed trajectory x̃(·). We assumed
here that the disturbance η(·) is active during a small time interval [t1, t2]. Its
presence puts the system “off course”, so that the origin is never reached.

Alternatively, one can solve the problem of steering the system to the
origin by means of a closed loop control. In this case, we would seek a control
function u = u(x) such that all trajectories of the O.D.E.

ẋ = g(x) .= f(x, u(x)) (1.8)

approach the origin as t →∞. This approach is less sensitive to the presence
of external disturbances. As illustrated in Figure 1.2 (right), in the presence
of an external disturbance η(·), the trajectory of the system does change, but
our eventual goal – steering the system to the origin – would still be attained.

Various examples of control system are described below.

Example 1.1 (boat on a river). Consider a river with straight course.
Using a set of planar coordinates, assume that it occupies the horizontal strip

S .= {(x1, x2) : −∞ < x1 < ∞, − 1 ≤ x2 ≤ 1}.
Moreover, assume that speed of the water is given by the velocity vector
v(x1, x2) = (1− x2

2, 0).
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~x(t)
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Fig. 1.2. The effect of a perturbation on an open loop and on a feedback control.

If a boat on the river is merely dragged along by the current, its position
will be determined by the differential equation

(ẋ1, ẋ2) = (1− x2
2, 0).

On the other hand, if the boat is powered by an engine, then its motion can
be modelled by the control system

(ẋ1, ẋ2) = v + u = (1− x2
2 + u1 , u2), (1.9)

where the vector u = (u1, u2) describes the velocity of the boat relative to the
water. The set U of admissible controls consists of all measurable functions
u : IR 7→ IR2 taking values inside the closed disc

U .=
{

(ω1, ω2) :
√

ω2
1 + ω2

2 ≤ M

}
. (1.10)

The constant M accounts for the maximum speed (in any direction) that can
be produced by the engine.

Given an initial condition (x1, x2)(0) = (x̄1, x̄2), solving (1.9) one finds

x1(t) = x̄1 + t +
∫ t

0

u1(s) ds−
∫ t

0

(
x̄2 +

∫ s

0

u2(r) dr

)2

ds,

x2(t) = x̄2 +
∫ t

0

u2(s) ds (−1 ≤ x2 ≤ 1).

In particular, the constant control u = (u1, u2) ≡ (−2/3, 1) takes the boat
from a point (x̄1,−1) on one side of the river to the point (x̄1, 1) on the
opposite side, in two units of time. It is not difficult to show that if M > 0
the boat can be steered from any point P on the river to any other point Q.

Observe that for the system (1.9)-(1.10) the admissible trajectories coin-
cide with the solutions to the differential inclusion
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v

Fig. 1.3. Velocities of the water and of the boat.

(ẋ1, ẋ2) ∈ F (x1, x2)
.=

{
(y1, y2) :

√
(y1 − 1 + x2

2)2 + y2
2 ≤ M

}
.

Example 1.2 (fishery management). Consider a fish population living in
a lake. A simple model describing how its size x(t) varies in time is provided
by the O.D.E.

ẋ = x(α− x). (1.11)

Here the constant α describes the maximum sustainable amount of fish which
can be present in the lake.

Next, assume that some fish is harvested from the lake, at rate u = u(t) .
For example, one may think of u as the number of fishermen active at time t.
In this case, the evolution of the fish population is described by

ẋ = x(α− x)− xu . (1.12)

This provides another example of a control system. In a realistic situation,
one may select the harvesting rate u = u(t) in order to maximize the total
amount of fish caught during a given time interval. Notice that if we adopt a
constant harvesting rate u(t) ≡ ū < α, the fish population will approach the
asymptotic limit x̄ = α− ū. As t →∞, the choice u(t) ≡ α/2 maximizes the
average amount of fish caught in unit time. Indeed

x̄ ū = (α− ū)ū = max
ω≥0

(α− ω)ω .

In several situations, the optimal harvesting of natural resources leads to
control problems of similar type.

Example 1.3 (cart on a rail). Consider a cart which can move without
friction along a straight rail (Figure 1.4). For simplicity, assume that it has
unit mass. Let y(0) = ȳ be its initial position and v(0) = v̄ be its initial
velocity. If no forces are present, its future position is simply given by
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y(t) = ȳ + v̄t .

Next, assume that a controller is able to push the cart, with an external force
u = u(t). The evolution of the system is then determined by the second order
equation

ÿ(t) = u(t) . (1.13)

Calling x1(t) = y(t) and x2(t) = v(t) respectively the position and the velocity
of the cart at time t, we can rewrite (1.13) as a first order control system:

(ẋ1, ẋ2) = (x2, u). (1.14)

Given the initial condition x1(0) = ȳ, x2(0) = v̄, solving (1.14) one finds

x1(t) = ȳ + v̄t +
∫ t

0

(t− s)u(s) ds,

x2(t) = v̄ +
∫ t

0

u(s) ds.

Assuming that the force satisfies the constraint
∣∣u(t)

∣∣ ≤ 1 ,

the control system (1.14) is equivalent to the differential inclusion

(ẋ1, ẋ2) ∈ F (x1, x2) = {(x2, ω) ; − 1 ≤ ω ≤ 1} .

u(t)

0 x(t)

Fig. 1.4. A cart moving along a straight, frictionless rail.

We now consider the problem of steering the system to the origin. More
precisely, we want the cart to be at the origin with zero speed. For example,
if the initial condition is (ȳ, v̄) = (2, 2), this goal is achieved by the open-loop
control

ũ(t) =




−1 if 0 ≤ t < 4,
1 if 4 ≤ t < 6,
0 if t ≥ 6.

A direct computation shows that (x1(t), x2(t)) = (0, 0) for t ≥ 6. Notice, how-
ever, that the above control would not accomplish the same task in connection
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with any other initial data (ȳ, v̄) different from (2, 2). This is a consequence
of the backward uniqueness of solutions to the differential equation (1.14).

A related problem is that of asymptotic stabilization. In this case, we seek
a feedback control function u = u(x1, x2) such that, for every initial data
(ȳ, v̄), the corresponding solution of the Cauchy problem

(ẋ1, ẋ2) = (x2 , u(x1, x2)) , (x1, x2)(0) = (ȳ, v̄)

approaches the origin as t →∞, i.e.

lim
t→∞

(x1, x2)(t) = (0, 0).

There are several feedback controls which accomplish this task. For example,
one can take u(x1, x2) = −x1 − x2.

Because of backward uniqueness, it is clear that there cannot be any Lip-
schitz continuous feedback u = u(x1, x2) which steers every initial condition
exactly to the origin within finite time. This goal, however, can be accom-
plished by the discontinuous feedback law

u(x1, x2) =




−1 if x2 > 0, x1 ≥ −x2

2/2 or if x2 ≤ 0, x1 > x2
2/2,

1 if x2 < 0, x1 ≤ x2
2/2 or if x2 ≥ 0, x1 < −x2

2/2,
0 if x1 = x2 = 0.

(1.15)
The multifunction

F (x1, x2) =
{

(x2, ω) ; ω ∈ [−1, 1]
}

,

and the trajectories of the corresponding equation

(ẋ1, ẋ2) = (x2 , u(x1, x2))

are shown in figure 1.5.

0

v

x

u = −1

u = 1

Fig. 1.5. A discontinuous feedback steering every initial point to the origin.

Example 1.4 (car steering). We consider here a mathematical model de-
scribing the motion of a car in a large parking lot. At a given time, the position
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of a car is determined by three scalar parameters: the coordinates (x, y) of
its barycenter B ∈ IR2 and the angle θ giving its orientation, as in Figure
1.6. The driver controls the motion of the car by acting on the gas pedal and
on the steering wheel. The control function thus has two scalar components:
speed u(t) of the car and the turning angle α(t). The motion is thus described
by the control system 




ẋ1 = u cos θ ,
ẋ2 = u sin θ ,

θ̇ = α u .
(1.16)

It is reasonable here to impose bounds on speed of the car and on the steering
angle, say

u(t) ∈ [−m,M ] , α(t) ∈ [−ᾱ, ᾱ] .

A frequently encountered problem is the following: given the initial po-
sition, steer the car into a parking spot. The typical maneuver needed for
parallel parking is illustrated in Figure 1.6.

x

y B
θ

Fig. 1.6. Car parking.

In connection with a control system of the general form (1.3), a wide range
of mathematical questions can be formulated.

A first set of problems is concerned with the dynamics of the system. Given
an initial state x̄, one would like to determine which other states x ∈ IRn can
be reached using the various admissible controls u ∈ U . More precisely, given a
control function u = u(t), call t 7→ x(t, u) the solution to the Cauchy problem

ẋ(t) = f(x(t), u(t)), x(0) = x̄,

and define the reachable set at time t as

R(t) = {x(t, u); u ∈ U}.

For general nonlinear systems, explicit formulas describing R(t) are not avail-
able. However, one can analyze several topological and geometric properties
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of this reachable set. The closure, boundedness, convexity, and the dimension
of the set R(t) provide useful information on the control system.

In addition, it is interesting to study whether R(t) is a neighborhood of
the initial point x̄ for all t > 0. In the positive case, the system is said to be
small time locally controllable at x̄. Another important case is when the union
of all reachable sets R(t) as t→∞ includes the entire space IRn. We then say
that the system is globally controllable.

The dependence of the reachable set R(t) on the time t and on the set
of controls U is also a subject of investigation. For example, if U is defined
by (1.4), one may ask whether the same points in R(t) can be reached by
using controls which are piecewise constant, or take values within the set
of extreme points of U. Being able to perform the same tasks by means of
a smaller set of control functions, easier to implement, is quite relevant in
practical applications.

Different kind of problems arise in connection with controls in feedback
form. Here one basic goal is to construct a feedback control u = u(x) such
that the resulting dynamics determined by the differential equation (1.8) has
certain desired properties. For example, one could seek a control which steers
every initial state asymptotically toward the origin, or stabilizes the system
in a neighborhood of a periodic orbit, etc. . .

The regularity of the feedback control is often a major issue of investiga-
tion. Ideally, one would like the function x 7→ u(x) to be smooth, or at least
continuous. However, for some nonlinear systems it turns out that certain
tasks cannot be accomplished by any continuous feedback law. This raises the
question of what kind of discontinuities can be allowed in a feedback control,
and how to interpret the solution to the resulting O.D.E. (1.8) when the right
hand side is a discontinuous function of the state x.

A further key issue related to feedback control is robustness. In general, the
differential equation (1.3) provides only an approximate description of reality.
External disturbances may affect the evolution of the system. Since these
cannot be predicted in advance, it is important to design a control such that
the system’s behavior will not be much affected by these small perturbations.
Continuous feedback laws are usually robust, but the problem can become
quite delicate when discontinuous feedbacks are implemented.

A second, very important area of control theory is concerned with opti-
mal control. In many applications, among all strategies which accomplish a
certain task, one seeks an optimal one, based on a given performance criterion.
In mathematical terms, a performance criterion can be defined by an integral
functional of the form

J =
∫ T

0

L(t, x, u) dt. (1.17)

The value of J will have to be optimized among all admissible trajectories of
(1.3), with a number of initial or terminal constraints.
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For example, among all controls which steer the system from the initial
point x̄ to some point on a target set Ω at time T , we may seek the one that
minimizes the cost functional (1.17). This problem is formulated as

min
u∈U

∫ T

0

L(t, x, u) dt (1.18)

subject to
ẋ = f(t, x, u), x(0) = x̄, x(T ) ∈ Ω . (1.19)

Observe that if (1.3)-(1.4) takes the simple form

ẋ = u, u(t) ∈ U = IRn, (1.20)

and if Ω = {ȳ} consists of just one point, then we do not have any con-
straint on the derivative ẋ. Our problem of optimal control thus reduces to
the standard problem in the Calculus of Variations:

min
x(·)

∫ T

0

L(t, x, ẋ) dt , x(0) = x̄, x(T ) = ȳ . (1.21)

Roughly speaking, the main difference between the problem (1.18)-(1.19) and
(1.21) is that in (1.21) the derivative ẋ is unrestricted, while in (1.18)-(1.19)
it is constrained within the closed set F (x) introduced at (1.6).

The basic mathematical theory of optimal control has been concerned with
three main issues:

(i) Existence of optimal controls. Under a suitable convexity assumption, op-
timal solutions can be constructed following the direct method in the
Calculus of Variations, i.e., as limits of minimizing sequences, relying on
compactness and lower semi-continuity properties. When the convexity
condition is not satisfied, the problem usually does not admit any optimal
solution. In some special cases, however, the existence of optimal control
can still be proved, using a variety of more specialized techniques.

(ii) Necessary conditions for the optimality of a control. The ultimate goal
of any set of necessary conditions is to isolate a hopefully unique candi-
date for the minimum. The major result in this direction is the celebrated
Pontryagin Maximum Principle , which extends to control systems the
Euler-Lagrange and the Weierstrass necessary conditions for a strong lo-
cal minimum in the Calculus of Variations. These first order conditions
have been supplemented by several high order conditions, which provide
additional information in a number of special cases.

(iii) Sufficient conditions for optimality. For some special classes of optimal
control problems, one finds a unique control u∗(·) which satisfies the Pon-
tryagin’s necessary conditions. In this case, u∗ provides the unique solution
to the optimization problem.
For general nonlinear systems, however, conditions which guarantee the
optimality of a control u∗(·) can only be obtained by a global analysis.
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Toward this goal, a standard technique is to embed (1.18)-(1.19) in a
family of problems, obtained by varying the initial conditions. The value
function V , defined as

V (τ, y) = min
u∈U

∫ T

τ

L(t, x, u) dt

subject to
ẋ = f(t, x, u), x(τ) = y, x(T ) ∈ Ω,

can then be characterized as the solution to a first order Hamilton-
Jacobi partial differential equation and computed by dynamic program-
ming methods. In turn, from the knowledge of the function V and its
gradient ∇xV , one can determine the optimal control u in feedback form.
The strong nonlinearity of the Hamilton-Jacobi equation and the possible
lack of regularity of the value function V account for the main difficulties
toward a rigorous mathematical analysis. In this direction, a major step
forward has been provided by the theory of viscosity solutions.

In addition to the fundamental theory, valid for control systems of the
general form (1.3), a wealth of results are available for some special systems
which can be analyzed in much greater detail. In particular, consider the linear
system with constant coefficients

ẋ = Ax + Bu, (1.22)

where x ∈ IRn, u ∈ IRm and the matrices A,B have dimension n × n and
n×m, respectively. For a given control t 7→ u(t), the corresponding solution
of (1.22) admits the explicit integral representation

x(t, u) = etAx(0) +
∫ t

0

e(t−s)ABu(s) ds.

This allows an in-depth study of all the relevant properties of the system.
Another important class consists of semi-linear systems, having the form

ẋ = f0(x) +
m∑

i=1

fi(x)ui , (1.23)

where f0, f1, · · · , fm are smooth vector fields on IRn. In general, there exists
no explicit representation for the trajectories of (1.23) in terms of integrals of
the control. Nevertheless, a rich mathematical theory has been developed for
these systems, applying techniques and ideas from differential geometry and
the theory of Lie algebras.


