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1.6.1 Poincaré’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6.2 The Classical Hardy-Littlewood-Sobolev Inequality . . . . 38

2 Existence of Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1 Second Order Elliptic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Methods of Linear Functional Analysis . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2 Some Basic Principles in Functional Analysis . . . . . . . . . 47

2.3.3 Existence of Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Variational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Semi-linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.2 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.3 Existence of Minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.4 Existence of Minimizers Under Constraints . . . . . . . . . . . 58

2.4.5 Mini-max Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.6 Existence of a Mini-max via the Mountain Pass Theorem 68

3 Regularity of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 W 2,p a priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.1 Newtonian Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.2 Uniform Elliptic Equations . . . . . . . . . . . . . . . . . . . . . . . . . 86



X Contents

3.2 W 2,p Regularity of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.1 The Case p ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.2 The Case 1 < p < 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.3 Other Useful Results Concerning the Existence,
Uniqueness, and Regularity . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3 Regularity Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.1 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.2 Regularity Lifting by Contracting Operators . . . . . . . . . . 102

3.3.3 Applications to PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3.4 Applications to Integral Equations . . . . . . . . . . . . . . . . . . . 109

3.3.5 Regularity Lifting by Combinations of Contracting
and Shrinking Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3.6 Applications to Integral Equations . . . . . . . . . . . . . . . . . . . 115

3.3.7 Applications to Fully Nonlinear Systems of Wolff Type . 119

4 Preliminary Analysis on Riemannian Manifolds . . . . . . . . . . . . 123

4.1 Differentiable Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2 Tangent Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Riemannian Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.4.1 Curvature of Plane Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.4.2 Curvature of Surfaces in R3 . . . . . . . . . . . . . . . . . . . . . . . . 132

4.4.3 Curvature on Riemannian Manifolds . . . . . . . . . . . . . . . . . 133

4.5 Calculus on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5.1 Higher Order Covariant Derivatives and the
Laplace-Beltrami Operator . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5.2 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.5.3 Equations on Prescribing Gaussian and Scalar Curvature140

4.6 Sobolev Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Prescribing Gaussian Curvature on Compact 2-Manifolds . . 145

5.1 Variational Methods in General . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Introduction to Prescribing Gaussian Curvature . . . . . . . . . . . . 148

5.3 The Negative Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.1 Kazdan and Warner’s Results–Method of Lower and
Upper Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.2 The Limiting Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4 The Non-negative Case–Variational Approaches . . . . . . . . . . . . . 162

5.4.1 Obstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.4.2 The Variational Approach and Key Inequalities . . . . . . . 163

5.4.3 Existence of Weak Solutions in Subcritical Case . . . . . . . 166

5.4.4 A Remedy for Critical Case–Recovering Coerciveness . . 167



Contents XI

5.4.5 Existence of Weak Solutions in the Critical Case . . . . . . 171

6 The Yamabe Problem and Prescribing Scalar Curvature
on Sn, for n ≥ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.1.1 The Yamabe Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.1.2 Prescribing Scalar Curvature on Sn . . . . . . . . . . . . . . . . . . 182

6.2 The Variational Approach for the Yamabe Problem . . . . . . . . . . 186

6.3 The Variational Approach for Prescribing Scalar Curvature . . . 192

6.3.1 Estimate the Values of the Functional . . . . . . . . . . . . . . . . 192

6.3.2 The Variational Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.4 The a priori Estimates for Prescribing Scalar Curvature . . . . . . 203

6.4.1 In the Region Where R < 0 . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.4.2 In the Region Where R is Small . . . . . . . . . . . . . . . . . . . . . 204

6.4.3 In the Regions Where R > 0. . . . . . . . . . . . . . . . . . . . . . . . 206

7 Maximum Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.2 Weak Maximum Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.3 The Hopf Lemma and Strong Maximum Principles . . . . . . . . . . 218

7.4 Maximum Principles Based on Comparisons . . . . . . . . . . . . . . . . 224

7.5 A Maximum Principle for Integral Equations . . . . . . . . . . . . . . . . 227

8 Methods of Moving Planes and Moving Spheres . . . . . . . . . . . 231

8.1 Outline of the Method of Moving Planes . . . . . . . . . . . . . . . . . . . 233

8.2 Applications of the Maximum Principles Based on
Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.2.1 Symmetry of Solutions in a Unit Ball . . . . . . . . . . . . . . . 235

8.2.2 Symmetry of Solutions of −△u = up in Rn . . . . . . . . . . . 238

8.2.3 Symmetry of Solutions for −△u = eu in R2 . . . . . . . . . . . 246

8.3 Method of Moving Planes in a Local Way . . . . . . . . . . . . . . . . . . 251

8.3.1 The Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.3.2 The A Priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

8.4 Method of Moving Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

8.4.1 The Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

8.4.2 Necessary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

8.5 Method of Moving Planes in Integral Forms . . . . . . . . . . . . . . . . . 266

A Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

A.1.1 Algebraic and Geometric Notation . . . . . . . . . . . . . . . . . . . 275

A.1.2 Notation for Functions and Derivatives . . . . . . . . . . . . . . . 276



XII Contents

A.1.3 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

A.1.4 Notation for Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

A.2 Notation and Basic Facts from Riemannian Geometry . . . . . . . . 279

A.3 Common Inequalities and Their Proofs . . . . . . . . . . . . . . . . . . . . . 282

A.4 Calderón-Zygmund’s Decomposition . . . . . . . . . . . . . . . . . . . . . . . 284

A.5 The Contracting Mapping Principle . . . . . . . . . . . . . . . . . . . . . . . . 286

A.6 The Arzela-Ascoli Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

A.7 The Proof of Lemma 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



1

Introduction to Sobolev Spaces

1.1 Distributions

1.2 Sobolev Spaces

1.3 Approximation by Smooth Functions

1.4 Sobolev Embeddings

1.5 Compact Embedding

1.6 Other Basic Inequalities

1.6.1 Poincaré’s Inequality

1.6.2 The Classical Hardy-Littlewood-Sobolev Inequality

People use numbers every day to quantify surrounding objects. In mathe-
matics, the absolute value |a−b| is used to measure the difference between two
numbers a and b. Functions are used to describe physical states. For example,
temperature is a function of time and place. Very often, we use a sequence of
approximate solutions to approach a real one; and how close these solutions
are to the real one depends on how we measure them (i.e., which metric we
are choosing). Hence, not only must we develop suitable metrics to measure
different states (functions), but we must also study relationships among dif-
ferent metrics. For these purposes, the Sobolev Spaces were introduced. They
have many applications in various branches of mathematics, in particular, in
the theory of partial differential equations.

The role of Sobolev Spaces in the analysis of PDEs is somewhat similar
to the role of Euclidean Spaces in the study of geometry. The fundamental
research on the relations among various Sobolev Spaces (Sobolev norms) was
first carried out by G. Hardy and J. Littlewood in the 1910s and then by S.
Sobolev in the 1930s. More recently, many well known mathematicians, such
as H. Brezis, L. Caffarelli, A. Chang, E. Lieb, L. Nirenberg, J. Serrin, and



2 1 Introduction to Sobolev Spaces

E. Stein have worked in this area. The main objectives are to determine if
and how the norms dominate each other, what the sharp estimates are, which
functions achieve these sharp estimates, and which functions are ‘critically’
related to these sharp estimates.

To find the existence of weak solutions for partial differential equations,
especially for nonlinear partial differential equations, the method of functional
analysis, in particular, the calculus of variations, has seen increasing applica-
tion.

To roughly illustrate this kind of application, let’s start with a simple
example. LetΩ be a bounded domain inRn and consider the Dirichlet problem
associated with the Laplace equation:{

−△u = f(x), x ∈ Ω
u = 0, x ∈ ∂Ω

(1.1)

To prove the existence of solutions, one may view −△ as an operator acting
on a proper linear space and then apply some known principles of functional
analysis, such as the ‘fixed point theory’ or ‘the degree theory,’ to derive the
existence. One may also consider the corresponding variational functional

J(u) =
1

2

∫
Ω

|▽u|2 d x−
∫
Ω

f(x)u dx (1.2)

in a proper linear space and seek critical points of the functional in that
space. This kind of variational approach is particularly powerful in dealing
with nonlinear equations. For example, in equation (1.1), instead of f(x), we
consider f(x, u). Then it becomes a semi-linear equation. Correspondingly, we
have the functional

J(u) =
1

2

∫
Ω

|▽u|2 d x−
∫
Ω

F (x, u) d x, (1.3)

where

F (x, u) =

∫ u

0

f(x, s) d x

is an anti-derivative of f(x, ·). From the definition of the functional in either
(1.2) or (1.3), one can see that the function u in the space need not be second
order differentiable as is required by classical solutions of (1.1). Hence the
critical points of the functional are solutions of the problem only in the ‘weak’
sense. However, by an appropriate regularity argument, one may recover the
differentiability of the solutions so that they can still satisfy equation (1.1) in
the classic sense.

In general, given a PDE problem, our intention is to view it as an operator
A acting on some proper linear spaces X and Y of functions and to write the
equation symbolically as
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Au = f (1.4)

We can then apply the general and elegant principles of linear or nonlinear
functional analysis to study the solvability of various equations involving A,
the result of which can then be applied to a broad class of partial differential
equations. We may also associate this operator with a functional J(·), whose
critical points are the solutions of the equation (1.4). In this process, the key
is to find an appropriate operator ‘A’ and appropriate spaces ‘X’ and ‘Y’. As
we shall see later, the Sobolev spaces are designed precisely for this purpose
and will work out properly.

In solving a partial differential equation, in many cases it is natural to
first find a sequence of approximate solutions and proceed to investigate the
convergence of the sequence. The limit function of a convergent sequence of
approximate solutions represents the desired, exact solution to the equation.
As we shall see in the next few chapters, there are two basic stages in showing
convergence:

i) In a reflexive Banach space, every bounded sequence has a weakly con-
vergent subsequence, and then

ii) By the compact embedding from a “stronger” Sobolev space into a
“weaker” one, the weak convergent sequence in the “stronger” space becomes
a strong convergent sequence in the “weaker” space.

Before going into the details of this chapter, the reader may take a glance
at the introduction of the next chapter to gain motivation for studying Sobolev
spaces.

In Section 1.1, we will introduce the distributions, mainly the notion of
the weak derivatives, which are the elements of the Sobolev spaces.

We then define Sobolev spaces in Section 1.2.

In deriving many useful properties in Sobolev spaces, it is inconvenient
to work directly with weak derivatives. Hence, in Section 1.3, we show that
these weak derivatives can be approximated by smooth functions. The three
sections that follow then focus on smooth functions in establishing a series of
important inequalities.

1.1 Distributions

As we saw in the introduction, the functional J(u) in (1.2) or (1.3) involved
only the first derivatives of u rather than the second derivatives as is required
for classical second order equations; moreover, these first derivatives need not
be continuous nor even defined everywhere. Therefore, by using a functional
analysis approach one can substantially weaken the notion of partial deriva-
tives. The advantage is that it divides the task of finding “suitable” smooth
solutions for a PDE into two major steps:
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Step 1. Existence of Weak Solutions. One seeks solutions that are less dif-
ferentiable but easier to obtain. It is very common to use “energy” minimiza-
tion or conservation, or sometimes to use finite dimensional approximation,
to show the existence of such weak solutions.

Step 2. Regularity Lifting. One uses various analysis tools to boost the
differentiability of the known weak solutions and try to show that they are
actually classical solutions.

Both the existence of weak solutions and regularity lifting have become two
major branches of today’s PDE analysis. Various function spaces and related
embedding theories are basic tools in both analyses, among which Sobolev
spaces are the most frequently used.

In this section, we introduce the notion of ‘weak derivatives,’ which will
be the elements of the Sobolev spaces.

Let Rn be the n-dimensional Euclidean space and Ω be an open connected
subset in Rn. Let D(Ω) = C∞

0 (Ω) be the linear space of infinitely differen-
tiable functions with compact support in Ω. This is called the space of test
functions on Ω.

Example 1.1.1 Assume

BR(x
o) := {x ∈ Rn | |x− xo| < R} ⊂ Ω,

then for any r < R, the following function

f(x) =

{
exp{ 1

|x−xo|2−r2 } for |x− xo| < r

0 elsewhere

is in C∞
0 (Ω).

Example 1.1.2 Assume ρ ∈ C∞
0 (Rn), u ∈ Lp(Ω), and supp u ⊂ K ⊂⊂ Ω.

Let

uϵ(x) := ρϵ ∗ u :=

∫
Rn

1

ϵn
ρ(
x− y

ϵ
)u(y)dy.

Then uϵ ∈ C∞
0 (Ω) for ϵ sufficiently small.

Now, let Lp
loc

(Ω) be the space of pth-power locally summable functions

for 1 ≤ p ≤ ∞. Such functions are Lebesgue measurable functions f defined
on Ω and with the property that

∥f∥Lp(K) :=

(∫
K

|f(x)|pdx
)1/p

<∞

for every compact subset K in Ω.

Assume that u is a C1 function in Ω and ϕ ∈ D(Ω). Through integration
by parts, we have, for i = 1, 2, · · · , n,
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Ω

∂u

∂xi
ϕ(x)dx = −

∫
Ω

u(x)
∂ϕ

∂xi
dx. (1.5)

Now if u is not in C1(Ω), then
∂u

∂xi
does not exist. However, the integral on

the right hand side of (1.5) still makes sense if u is a locally L1 summable

function. For this reason, we define the first derivative
∂u

∂xi
weakly as the

function v(x) that satisfies∫
Ω

v(x)ϕ(x)dx = −
∫
Ω

u
∂ϕ

∂xi
dx

for all functions ϕ ∈ D(Ω).

The same idea works for higher partial derivatives. Let α =
(α1, α2, · · · , αn) be a multi-index of order

k := |α| := α1 + α2 + · · ·+ αn.

For u ∈ Ck(Ω), the regular αth partial derivative of u is

Dαu =
∂α1∂α2 · · · ∂αnu

∂xα1
1 ∂xα2

2 · · · ∂xαn
n
.

Given any test function ϕ ∈ D(Ω), through a straightforward integration by
parts k times, we arrive at∫

Ω

Dαuϕ(x) d x = (−1)|α|
∫
Ω

uDαϕdx. (1.6)

There is no boundary term because ϕ vanishes near the boundary.

Now if u is not k times differentiable, the left hand side of (1.6) makes no
sense. However the right hand side is valid for functions u with much weaker
differentiability, i.e., u only need to be locally L1 summable. Thus it is natural
to choose those functions v that satisfy (1.6) as the weak representatives of
Dαu.

Definition 1.1.1 For u, v ∈ L1
loc(Ω), we say that v is the αth weak derivative

of u, written
v = Dαu

provided ∫
Ω

v(x)ϕ(x) d x = (−1)|α|
∫
Ω

uDαϕdx

for all test functions ϕ ∈ D(Ω).
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Example 1.1.3 For n = 1 and Ω = (−π, 1), let

u(x) =

{
cosx if − π < x ≤ 0
1− x if 0 < x < 1.

Then its weak derivative u′(x) can be represented by

v(x) =

{
− sinx if − π < x ≤ 0
−1 if 0 < x < 1.

To see this, we verify, for any ϕ ∈ D(Ω), that∫ 1

−π
u(x)ϕ′(x)dx = −

∫ 1

−π
v(x)ϕ(x)dx. (1.7)

In fact, through integration by parts, we have∫ 1

−π
u(x)ϕ′(x)dx =

∫ 0

−π
cosxϕ′(x)dx+

∫ 1

0

(1− x)ϕ′(x)dx

=

∫ 0

−π
sinxϕ(x)dx+ ϕ(0)− ϕ(0) +

∫ 1

0

ϕ(x)dx

= −
∫ 1

−π
v(x)ϕ(x)dx.

In this example, one can see that, in the classical sense, the function u is
not differentiable at x = 0. Since the weak derivative is defined by integrals,
one may alter the values of the weak derivative v(x) in a set of measure zero,
and (1.7) still holds. However, it should be unique up to a set of measure zero.

Lemma 1.1.1 (Uniqueness of Weak Derivatives). If v and w are the weak
αth partial derivatives of u, Dαu, then v(x) = w(x) almost everywhere.

Proof. By the definition of the weak derivatives, we have∫
Ω

v(x)ϕ(x)dx = (−1)|α|
∫
Ω

u(x)Dαϕdx =

∫
Ω

w(x)ϕ(x)dx

for any ϕ ∈ D(Ω). It follows that∫
Ω

(v(x)− w(x))ϕ(x)dx = 0 ∀ϕ ∈ D(Ω).

Therefore, by a standard argument (as an exercise), we must have

v(x) = w(x) almost everywhere in Ω.

�
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Exercise 1.1.1 Assume that f ∈ L1
loc(Ω) and∫

Ω

f(x)ϕ(x)dx = 0, ∀ϕ ∈ D(Ω);

then
f(x) = 0, almost everywhere in Ω.

From the definition, we can view a weak derivative as a linear functional
acting on the space of test functions D(Ω), and we call it a distribution. More
generally, we have the following definition:

Definition 1.1.2 A distribution is a continuous linear functional on D(Ω).
The linear space of distributions or the generalized functions on Ω, denoted
by D′(Ω), is the collection of all continuous linear functionals on D(Ω).

Here, the continuity of a functional T on D(Ω) means that, for any se-
quence {ϕk} ⊂ D(Ω) with ϕk→ϕ in D(Ω), we have

T (ϕk)→T (ϕ), as k→∞;

and we say that ϕk→ϕ in D(Ω) if

a) there exists K ⊂⊂ Ω such that suppϕk, suppϕ ⊂ K, and

b) for any α, Dαϕk→Dαϕ uniformly as k→∞.

The most important and most commonly used distributions are locally
summable functions. In fact, for any f ∈ Lp

loc
(Ω) with 1 ≤ p ≤ ∞, consider

Tf (ϕ) =

∫
Ω

f(x)ϕ(x)dx.

It is easy to verify that Tf (·) is a continuous linear functional on D(Ω) and
is hence a distribution.

For any distribution µ, if there is an f ∈ L1
loc(Ω) such that

µ(ϕ) = Tf (ϕ), ∀ϕ ∈ D(Ω),

then we say that µ is (or can be realized as) a locally summable function and
identify it as f .

An interesting example of a distribution that is not a locally summable
function is the well-known Dirac delta function. Let xo be a point in Ω. For
any ϕ ∈ D(Ω), the delta function at xo can be defined as

δxo(ϕ) = ϕ(xo).

Hence it is a distribution. However, one can show that such a delta function is
not locally summable. It is not a function at all. This kind of “function” has
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been used widely and so successfully by physicists and engineers, who often
simply view δxo as

δxo(x) =

{
0, for x ̸= xo

∞, for x = xo.

Surprisingly, such a delta function is the derivative of some function in the
following distributional sense. To explain this, let Ω = (−1, 1), and let

f(x) =

{
0, for x < 0
1, for x ≥ 0.

Then, we have

−
∫ 1

−1

f(x)ϕ′(x)dx = −
∫ 1

0

ϕ′(x)dx = ϕ(0) = δ0(ϕ).

Comparing this with the definition of weak derivatives, we may regard δ0(x)
as f ′(x) in the sense of distributions.

1.2 Sobolev Spaces

Given a function f ∈ Lp(Ω), we would like to solve the partial differential
equation

∆u = f(x)

in the sense of weak derivatives. Naturally, we would seek solutions u, such
that ∆u are in Lp(Ω). More generally, we would start from the collections of
all distributions whose second weak derivatives are in Lp(Ω).

In a variational approach, as we have seen in the introduction, to seek
critical points of the functional

1

2

∫
Ω

|▽u|2dx−
∫
Ω

F (x, u)dx,

a natural set of functions to start with is the collection of distributions whose
first weak derivatives are in L2(Ω). More generally, we have:

Definition 1.2.1 The Sobolev space W k,p(Ω) (k ≥ 0 and p ≥ 1) is the
collection of all distributions u on Ω such that for all multi-index α with
|α| ≤ k, Dαu can be realized as an Lp function on Ω. Furthermore, W k,p(Ω)
is a Banach space with the norm

||u|| :=

∑
|α|≤k

∫
Ω

|Dαu(x)|pdx

1/p

.
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In the special case when p = 2, it is also a Hilbert space and we usually
denote it by Hk(Ω).

Definition 1.2.2 W k,p
0 (Ω) is the closure of C∞

0 (Ω) in W k,p(Ω).

Roughly speaking,W k,p
0 (Ω) is the space of functions whose up to (k−1)th

order derivatives vanish on the boundary.

Example 1.2.1 Let Ω = (−1, 1). Consider the function f(x) = |x|β. For
0 < β < 1, it is obviously not differentiable at the origin. However for any

1 ≤ p <
1

1− β
, it is in the Sobolev space W 1,p(Ω). More generally, let Ω be

an open unit ball centered at the origin in Rn; then the function |x|β is in
W 1,p(Ω) if and only if

β > 1− n

p
. (1.8)

To see this, we first calculate

fxi(x) =
βxi

|x|2−β
, for x ̸= 0,

and hence

|▽f(x)| = β

|x|1−β
. (1.9)

Fix a small ϵ > 0. Then for any ϕ ∈ D(Ω), by integration by parts, we
have ∫

Ω\Bϵ(0)

fxi(x)ϕ(x)dx = −
∫
Ω\Bϵ(0)

f(x)ϕxi(x)dx+

∫
∂Bϵ(0)

fϕνidS,

where ν = (ν1, ν2, · · · , νn) is an inward-normal vector on ∂Bϵ(0).

Now, under the condition that β > 1−n/p, fxi is in Lp(Ω) ⊂ L1(Ω), and

|
∫
∂Bϵ(0)

fϕνidS| ≤ Cϵn−1+β→0, as ϵ→0.

It follows that ∫
Ω

|x|βϕxi(x)dx = −
∫
Ω

βxi
|x|2−β

ϕ(x)dx.

Therefore, the weak first partial derivatives of |x|β are

βxi
|x|2−β

, i = 1, 2, · · · , n.

Moreover, from (1.9) one can see that |▽f | is in Lp(Ω) if and only if
β > 1− n

p .
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1.3 Approximation by Smooth Functions

While working in Sobolev spaces, for instance, in proving inequalities, it may
feel inconvenient and cumbersome to manage a weak derivative directly based
on its definition. To get around this, we will show in this section that any func-
tion in a Sobolev space can be approached by a sequence of smooth functions.
In other words, the smooth functions are dense in Sobolev spaces. Based on
this, when deriving many useful properties of Sobolev spaces, we can just work
on smooth functions and then take limits.

At the end of the section, for more convenient application of the approxi-
mation results, we prove an Operator Completion Theorem and an Extension
Theorem. Both theorems will be used frequently in the next few sections.

The idea in approximation is based on mollifiers . Let

j(x) =

{
c e

1
|x|2−1 if |x| < 1

0 if |x| ≥ 1.

One can verify that
j(x) ∈ C∞

0 (B1(0)).

Choose the constant c, such that∫
Rn

j(x)dx = 1.

For each ϵ > 0, define

jϵ(x) =
1

ϵn
j(
x

ϵ
).

Obviously, ∫
Rn

jϵ(x)dx = 1, ∀ϵ > 0.

One can also verify that jϵ ∈ C∞
0 (Bϵ(0)), and

lim
ϵ→0

jϵ(x) =

{
0 for x ̸= 0
∞ for x = 0.

The above observations suggest that the limit of jϵ(x) may be viewed as a
delta function, and from the well-known property of the delta function, we
would naturally expect that for any continuous function f(x) and for any
point x ∈ Ω,

(Jϵf)(x) :=

∫
Ω

jϵ(x− y)f(y)dy→f(x), as ϵ→0. (1.10)

More generally, if f(x) is only in Lp(Ω), we would expect (1.10) to hold almost
everywhere. We call jϵ(x) a mollifier and (Jϵf)(x) the mollification of f(x).
We will show that for each ϵ > 0, Jϵf is a C∞ function, and as ϵ→0,
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Jϵf→f in W k,p.

Actually, notice that

(Jϵf)(x) =

∫
Bϵ(x)∩Ω

jϵ(x− y)f(y)dy,

and hence in order for Jϵf(x) to approximate f(x) well, we need Bϵ(x) to be
completely contained in Ω to ensure that∫

Bϵ(x)∩Ω
jϵ(x− y)dy = 1

(an important property of the delta function). Equivalently, we need x to be
in the interior of Ω. For this reason, we first prove a local approximation
theorem.

Theorem 1.3.1 (Local Approximation by Smooth Functions).

For any f ∈W k,p(Ω), Jϵf ∈ C∞(Rn) and Jϵf → f in W k,p
loc (Ω) as ϵ→0.

To extend this result to the entire Ω, we will choose infinitely many open
sets Oi, i = 1, 2, · · · , each of which has a positive distance to the boundary
of Ω and whose union is the whole Ω. Based on the above theorem, we are
able to approximate a W k,p(Ω) function on each Oi by a sequence of smooth
functions. Combining this with a partition of unity, and a cut-off function if
Ω is unbounded, we will then prove:

Theorem 1.3.2 (Global Approximation by Smooth Functions).

For any f ∈ W k,p(Ω), there exists a sequence of functions {fm} ⊂
C∞(Ω) ∩W k,p(Ω) such that fm → f in W k,p(Ω) as m→∞.

Theorem 1.3.3 (Global Approximation by Smooth Functions up to the
Boundary).

Assume that Ω is bounded with C1 boundary ∂Ω. Then for any f ∈
W k,p(Ω), there exists a sequence of functions {fm} ⊂ C∞(Ω) = C∞(Ω) ∩
W k,p(Ω) such that fm → f in W k,p(Ω) as m→∞.

When Ω is the entire space Rn, the approximation by C∞ or by C∞
0

functions are essentially the same. We have

Theorem 1.3.4 W k,p(Rn) = W k,p
0 (Rn). In other words, for any f ∈

W k,p(Rn), there exists a sequence of functions {fm} ⊂ C∞
0 (Rn), such that

fm→f, as m→∞; in W k,p(Rn).
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Proof of Theorem 1.3.1

We prove the theorem in three steps.

In step 1, we show that Jϵf ∈ C∞(Rn) and

∥Jϵf∥Lp(Ω) ≤ ∥f∥Lp(Ω).

From the definition of Jϵf(x), we can see that it is well defined for all x ∈ Rn,
and it vanishes if x is of ϵ distance away from Ω. Here and in the following,
for simplicity of argument, we extend f to be zero outside of Ω.

In step 2, we prove that if f is in Lp(Ω),

(Jϵf)→f in Lploc(Ω).

We first verify this for continuous functions and then approximate Lp functions
by continuous functions.

In step 3, we reach the conclusion of the Theorem. For each f ∈W k,p(Ω)
and |α| ≤ k, Dαf is in Lp(Ω). Then from the result in Step 2, we have

Jϵ(D
αf)→Dαf in Lploc(Ω).

Hence, what we need to verify is

Dα(Jϵf)(x) = Jϵ(D
αf)(x).

As the reader will notice, the arguments in the last two steps only work
in any compact subset of Ω.

Step 1.

Let ei = (0, · · · , 0, 1, 0, · · · , 0) be the unit vector in the xi direction.

Fix ϵ > 0 and x ∈ Rn. By the definition of Jϵf we have, for |h| < ϵ,

(Jϵf)(x+ hei)− (Jϵf)(x)

h
=

∫
B2ϵ(x)∩Ω

jϵ(x+ hei − y)− jϵ(x− y)

h
f(y)dy.

(1.11)
Since as h→0,

jϵ(x+ hei − y)− jϵ(x− y)

h
→∂jϵ(x− y)

∂xi

uniformly for all y ∈ B2ϵ(x) ∩ Ω, we can pass the limit through the integral
sign in (1.11) to obtain

∂(Jϵf)(x)

∂xi
=

∫
Ω

∂jϵ(x− y)

∂xi
f(y)dy.

Similarly, we have
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Dα(Jϵf)(x) =

∫
Ω

Dα
x jϵ(x− y)f(y)dy.

Noticing that jϵ(·) is infinitely differentiable, we conclude that Jϵf is also
infinitely differentiable.

Then we derive
∥Jϵf∥Lp(Ω) ≤ ∥f∥Lp(Ω). (1.12)

By the Hölder inequality, we have

|(Jϵf)(x)| = |
∫
Ω

j
p−1
p

ϵ (x− y)j
1
p
ϵ (x− y)f(y)dy|

≤
(∫

Ω

jϵ(x− y)dy

) p−1
p
(∫

Ω

jϵ(x− y)|f(y)|pdy
) 1

p

≤

(∫
Bϵ(x)

jϵ(x− y)|f(y)|pdy

) 1
p

.

It follows that∫
Ω

|(Jϵf)(x)|pdx ≤
∫
Ω

(∫
Bϵ(x)

jϵ(x− y)|f(y)|pdy

)
dx

≤
∫
Rn

|f(y)|p
(∫

Rn

jϵ(x− y)dx

)
dy

=

∫
Ω

|f(y)|pdy.

Notice that here we have extended f to be zero outside Ω.

This verifies (1.12).

Step 2.

We prove that for any compact subset K of Ω,

∥Jϵf − f∥Lp(K)→0, as ϵ→0. (1.13)

We first show this for a continuous function f . By writing

(Jϵf)(x)− f(x) =

∫
Bϵ(0)

jϵ(y)[f(x− y)− f(x)]dy,

we have

|(Jϵf)(x)− f(x)| ≤ max
x∈K,|y|<ϵ

|f(x− y)− f(x)|
∫
Bϵ(0)

jϵ(y)dy

≤ max
x∈K,|y|<ϵ

|f(x− y)− f(x)|.



14 1 Introduction to Sobolev Spaces

Due to the continuity of f and the compactness ofK, the last term in the above
inequality tends to zero uniformly as ϵ→0. This verifies (1.13) for continuous
functions.

For any f in Lp(Ω), and given any δ > 0, choose a a continuous function
g, such that

∥f − g∥Lp(Ω) <
δ

3
. (1.14)

This can be derived from the well-known fact that any Lp function can be
approximated by a simple function of the form

∑k
j=1 ajχj(x), where χj is the

characteristic function of some measurable set Aj ; and each simple function
can be approximated by a continuous function.

For the continuous function g, (1.13) implies that for sufficiently small ϵ,
we have

∥Jϵg − g∥Lp(K) <
δ

3
.

It follows from this and (1.14) that

∥Jϵf − f∥Lp(K) ≤ ∥Jϵf − Jϵg∥Lp(K) + ∥Jϵg − g∥Lp(K) + ∥g − f∥Lp(K)

≤ 2∥f − g∥Lp(K) + ∥Jϵg − g∥Lp(K)

≤ 2 · δ
3
+
δ

3
= δ.

This proves (1.13).

Step 3.

Now assume that f ∈ W k,p(Ω). Then for any α with |α| ≤ k, we have
Dαf ∈ Lp(Ω). We show that

Dα(Jϵf)→Dαf in Lp(K). (1.15)

By the result in Step 2, we have

Jϵ(D
αf)→Dαf in Lp(K).

What remains to verify is that for sufficiently small ϵ,

Dα(Jϵf)(x) = Jϵ(D
αf)(x), ∀x ∈ K.

To see this, we fix a point x in K. Choose ϵ < 1
2dist(K, ∂Ω) so that any

point y in the ball Bϵ(x) is then in the interior of Ω. Consequently,
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Dα(Jϵf)(x) =

∫
Ω

Dα
x jϵ(x− y)f(y)dy

=

∫
Bϵ(x)

Dα
x jϵ(x− y)f(y)dy

= (−1)|α|
∫
Bϵ(x)

Dα
y jϵ(x− y)f(y)dy

=

∫
Bϵ(x)

jϵ(x− y)Dαf(y)dy

=

∫
Ω

jϵ(x− y)Dαf(y)dy.

Here we have used the fact that jϵ(x−y) and all its derivatives are supported
in Bϵ(x) ⊂ Ω.

This completes the proof of the Theorem 1.3.1. �

The Proof of Theorem 1.3.2

Step 1. For a Bounded Region Ω.

Let

Ωi = {x ∈ Ω | dist(x, ∂Ω) >
1

i
}, i = 1, 2, 3, · · ·

Write Oi = Ωi+3 \Ω̄i+1. Choose some open set O0 ⊂⊂ Ω so that Ω = ∪∞
i=0Oi.

Choose a smooth partition of unity {ηi}∞i=0 associated with the open sets
{Oi}∞i=0, {

0 ≤ ηi(x) ≤ 1, ηi ∈ C∞
0 (Oi)∑∞

i=0 ηi(x) = 1, x ∈ Ω.

Given any function f ∈ W k,p(Ω), obviously ηif ∈ W k,p(Ω) and supp(ηif) ⊂
Oi.

Fix a δ > 0. Choose ϵi > 0 so small that fi := Jϵi(ηif) satisfies{
∥fi − ηif∥Wk,p(Ω) ≤ δ

2i+1 , i = 0, 1, · · · ,
suppfi ⊂ (Ωi+4 \ Ω̄i), i = 1, 2, · · · . (1.16)

Set g =
∑∞
i=0 fi. Then g ∈ C∞(Ω) because each fi is in C

∞(Ω), and for
each open set O ⊂⊂ Ω, there are at most finitely many nonzero terms in the
sum. To see that g ∈W k,p(Ω), we write

g − f =

∞∑
i=0

(fi − ηif).

It follows from (1.16) that
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∞∑
i=0

∥fi − ηif∥Wk,p(Ω) ≤ δ
∞∑
i=0

1

2i+1
= δ.

From here we can see that the series
∑∞
i=0(fi−ηif) converges inW k,p(Ω) (see

Exercise 1.3.1 below); hence, (g − f) ∈ W k,p(Ω) and therefore g ∈ W k,p(Ω).
Moreover, from the above inequality, we have

∥g − f∥Wk,p(Ω) ≤ δ.

Since δ > 0 is any number, we complete Step 1.

Remark 1.3.1 In the above argument, neither
∑
fi nor

∑
ηif converge, but

their difference converges. Although each partial sum of
∑
fi is in C∞

0 (Ω),
the infinite series

∑
fi does not converge to g in W k,p(Ω). Then how did we

prove that g ∈W k,p(Ω)? We showed that the difference (g−f) is inW k,p(Ω).

Exercise 1.3.1 .

Let X be a Banach space and vi ∈ X. Show that the series
∑∞
i vi converges

in X if
∑∞
i ∥vi∥ <∞.

Hint: Show that the partial sum is a Cauchy sequence.

Step 2. For Unbounded Region Ω.

Given any δ > 0, since f ∈W k,p(Ω), there exist R > 0, such that

∥f∥Wk,p(Ω\BR−2(0)) ≤ δ. (1.17)

Choose a cut-off function ϕ ∈ C∞(Rn) satisfying

ϕ(x) =

{
1, x ∈ BR−2(0),
0, x ∈ Rn \BR(0);

and |Dαϕ(x)| ≤ 1 ∀x ∈ Rn,∀|α| ≤ k.

Then by (1.17), it is easy to verify that there exists a constant C, such that

∥ϕf − f∥Wk,p(Ω) ≤ Cδ. (1.18)

Now in the bounded domain Ω ∩ BR(0), by the argument in Step 1, there is
a function g ∈ C∞(Ω ∩BR(0)), such that

∥g − f∥Wk,p(Ω∩BR(0)) ≤ δ. (1.19)

Obviously, the function ϕg is in C∞(Ω), and by (1.18) and (1.19),

∥ϕg − f∥Wk,p(Ω) ≤ ∥ϕg − ϕf∥Wk,p(Ω) + ∥ϕf − f∥Wk,p(Ω)

≤ C1∥g − f∥Wk,p(Ω∩BR(0)) + Cδ

≤ (C1 + C)δ.
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This completes the proof of the Theorem 1.3.2. �

The Proof of Theorem 1.3.3

We will continue to use mollifiers to approximate a function. As compared
to the proofs of the previous theorem, the main difficulty here is that for a
point on the boundary, there is no room to mollify. To circumvent this, we
cover Ω with finitely many open sets, and on each set that covers the boundary
layer, we will translate the function a little bit inward so that there is room
to mollify within Ω. Then we will again use the partition of unity to complete
the proof.

Step 1. Approximating in a Small Set Covering ∂Ω.

Let xo be any point on ∂Ω. Since ∂Ω is C1, we can make a C1 change
of coordinates locally, so that in the new coordinates system (x1, · · · , xn), we
can express, for a sufficiently small r > 0,

Br(x
o) ∩Ω = {x ∈ Br(x

o) | xn > ϕ(x1, · · ·xn−1)}

with some C1 function ϕ.

Set
D = Ω ∩Br/2(xo).

Shift every point x ∈ D in xn direction aϵ units, define

xϵ = x+ aϵen.

and
Dϵ = {xϵ | x ∈ D}.

This Dϵ is obtained by shifting D toward the inside of Ω by aϵ units. Choose
a sufficiently large, so that the ball Bϵ(x) lies in Ω ∩ Br(xo) for all x ∈ Dϵ

and for all small ϵ > 0. There is now room to mollify a given W k,p function
f on Dϵ within Ω. More precisely, we first translate f a distance ϵ in the xn
direction to become f ϵ(x) = f(xϵ), then mollify it. We claim that

Jϵf
ϵ→f in W k,p(D).

Actually, for any multi-index |α| ≤ k, we have

∥Dα(Jϵf
ϵ)−Dαf∥Lp(D) ≤ ∥Dα(Jϵf

ϵ)−Dαf ϵ∥Lp(D) + ∥Dαf ϵ −Dαf∥Lp(D).

A similar argument as in the proof of Theorem 1.3.1 implies that the first
term on the right hand side goes to zero as ϵ→0, while the second term also
vanishes in the process due to the continuity of the translation in the Lp norm.
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Step 2. Applying the Partition of Unity.

Since ∂Ω is compact, we can find finitely many such sets D, call them
Di, i = 1, 2, · · · , N , the union of which covers ∂Ω. Given δ > 0, from the
argument in Step 1, for each Di, there exists gi ∈ C∞(D̄i), such that

∥gi − f∥Wk,p(Di) ≤ δ. (1.20)

Choose an open set D0 ⊂⊂ Ω such that Ω ⊂ ∪Ni=0Di, and select a function
g0 ∈ C∞(D̄0) such that

∥g0 − f∥Wk,p(D0) ≤ δ. (1.21)

Let {ηi} be a smooth partition of unity subordinated to the open sets
{Di}Ni=0. Define

g =

N∑
i=0

ηigi.

Then obviously g ∈ C∞(Ω̄), and f =
∑N
i=0 ηif. Similar to the proof of Theo-

rem 1.3.1, it follows from (1.20) and (1.21) that, for each |α| ≤ k

∥Dαg −Dαf∥Lp(Ω) ≤
N∑
i=0

∥Dα(ηigi)−Dα(ηif)∥Lp(Di)

≤ C

N∑
i=0

∥gi − f∥Wk,p(Di) = C(N + 1)δ.

This completes the proof of the Theorem 1.3.3. �

The Proof of Theorem 1.3.4

Let ϕ(r) be a C∞
0 cut-off function such that

ϕ(r) =

1 , for 0 ≤ r ≤ 1;
between 0 and 1 , for 1 < r < 2;
0 , for r ≥ 2.

Then by a direct computation, one can show that

∥ϕ( |x|
R

)f(x)− f(x)∥Wk,p(Rn)→0, as R→∞. (1.22)

Thus, there exists a sequence of numbers {Rm} with Rm→∞, such that for

gm(x) := ϕ(
|x|
Rm

)f(x),

we have
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∥gm − f∥Wk,p(Rn) ≤
1

m
. (1.23)

On the other hand, from the Approximation Theorem 1.3.3, for each fixed
m,

Jϵ(gm)→gm, as ϵ→0, in W k,p(Rn).

Hence there exist ϵm, such that for

fm := Jϵm(gm),

we have

∥fm − gm∥Wk,p(Rn) ≤
1

m
. (1.24)

Obviously, each function fm is in C∞
0 (Rn), and by (1.23) and (1.24),

∥fm−f∥Wk,p(Rn) ≤ ∥fm−gm∥Wk,p(Rn)+∥gm−f∥Wk,p(Rn) ≤
2

m
→0, as m→∞.

This completes the proof of Theorem 1.3.4. �

We have now proved all four Approximation Theorems, which show that
smooth functions are dense in Sobolev spaces W k,p. In other words, W k,p is
the completion of Ck under the norm ∥ · ∥Wk,p . Later, particularly in the next
three sections, when we derive various inequalities in Sobolev spaces, we can
first work on smooth functions and then extend them to whole Sobolev spaces.
In order to make such extensions more convenient (i.e., avoid going through
the approximation process in each particular space), we prove the following
Operator Completion Theorem in general Banach spaces.

Theorem 1.3.5 Let D be a dense linear subspace of a normed space X. Let
Y be a Banach space. Assume

T : D 7→ Y

is a bounded linear map. Then there exists an extension T̄ of T from D to the
whole space X, such that T̄ is a bounded linear operator from X to Y ,

∥T̄∥ = ∥T∥ and T̄ x = Tx ∀x ∈ D.

Proof. Given any element xo ∈ X, since D is dense in X, there exists a
sequence {xi} ∈ D, such that

xi→xo, as i→∞.

It follows that
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∥Txi − Txj∥ ≤ ∥T∥∥xi − xj∥→0, as i, j→∞.

This implies that {Txi} is a Cauchy sequence in Y . Since Y is a Banach space,
{Txi} converges to some element yo in Y . Let

T̄ xo = yo. (1.25)

To see that (1.25) is well defined, suppose there is another sequence {x′i} that
converges to xo in X and Tx′i→y1 in Y . Then

∥y1 − yo∥ = lim
i→∞

∥Tx′i − Txi∥ ≤ Climi→∞∥x′i − xi∥ = 0.

Now, for x ∈ D, define T̄ x = Tx; and for other x ∈ X, define T̄ x by (1.25).

Obviously, T̄ is a linear operator. Moreover

∥T̄ xo∥ = lim
i→∞

∥Txi∥ ≤ lim
i→∞

∥T∥∥xi∥ = ∥T∥∥xo∥.

Hence T̄ is also bounded. This completes the proof. �

As a direct application of this Operator Completion Theorem, we prove
the following Extension Theorem.

Theorem 1.3.6 Assume that Ω is bounded and ∂Ω is Ck. Then for any open
set O ⊃ Ω, there exists a bounded linear operator E : W k,p(Ω) → W k,p

0 (O)
such that Eu = u a.e. in Ω.

Proof. To define the extension operator E, we first work on functions u ∈
Ck(Ω̄). Then we can apply the Operator Completion Theorem to extend E
to W k,p(Ω), since Ck(Ω̄) is dense in W k,p(Ω) (see Theorem 1.3.3). From this
density, it is easy to show that, for u ∈W k,p(Ω),

E(u)(x) = u(x) almost everywhere on Ω

based on
E(u)(x) = u(x) on Ω̄ ∀u ∈ Ck(Ω̄).

Now we prove the theorem for u ∈ Ck(Ω̄). We define E(u) in the following
two steps.

Step 1. The special case when Ω is a half ball

B+
r (0) := {x = (x′, xn) ∈ Rn | |x| < r, xn > 0}.

Assume u ∈ Ck(B+
r (0)). We extend u to be a Ck function on the whole

ball Br(0). Define
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ū(x′, xn) =

{
u(x′, xn) , xn ≥ 0∑k
i=0 ai u(x

′,−λixn) , xn < 0.

To guarantee that all partial derivatives
∂j ū(x′, xn)

∂xjn
up to order k are contin-

uous across the hyper plane xn = 0, we first pick λi, such that

0 < λ0 < λ1 < · · · < λk < 1.

We then solve the algebraic system

k∑
i=0

aiλ
j
i = 1 , j = 0, 1, · · · , k,

to determine a0, a1, · · · , ak. Since the coefficient determinant det(λji ) is not
zero, the system has a unique solution. One can easily verify that, for such λi
and ai, the extended function ū is in Ck(Br(0)).

Step 2. Reduce the general domains to the case of the half ball covered in
Step 1 via domain transformations and a partition of unity.

Let O be an open set containing Ω̄. Given any xo ∈ ∂Ω, there exists a
neighborhood U of xo and a Ck transformation ϕ : U→Rn which satisfies
that ϕ(xo) = 0, ϕ(U ∩ ∂Ω) lies on the hyper plane xn = 0, and ϕ(U ∩ Ω) is
contained in Rn+. Then there exists an ro > 0, such that Bro(0) ⊂⊂ ϕ(U),

Dxo := ϕ−1(Bro(0)) is an open set containing xo, and ϕ ∈ Ck(Dxo). Choose
ro sufficiently small so that Dxo ⊂ O. All such Dxo and Ω forms an open
covering of Ω̄, hence there exists a finite sub-covering

D0 := Ω, D1, · · · , Dm

and a corresponding partition of unity

η0, η1, · · · , ηm,

such that
ηi ∈ C∞

0 (Di) i = 0, 1, · · · ,m
and

m∑
i=0

ηi(x) = 1 ∀x ∈ Ω.

Let ϕi be the mapping associated with Di as described above, and let
ũi(y) = u(ϕ−1

i (y) be the function defined on the half ball

B+
ri(0) = ϕi(Di ∩ Ω̄) , i = 1, 2, · · ·m.

From Step 1, each ũi(y) can be extended as a Ck function ūi(y) onto the
whole ball Bri(0).
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We can now define the extension of u from Ω to its neighborhood O as

E(u) =
m∑
i=1

ηi(x)ūi(ϕi(x)) + η0u(x).

Obviously, E(u) ∈ C∞
0 (O), and

∥E(u)∥Wk,p(O) ≤ C∥u∥Wk,p(Ω).

Moreover, for any x ∈ Ω̄, we have

E(u)(x) =

m∑
i=1

ηi(x)ūi(ϕi(x)) + η0(x)u(x) =

m∑
i=1

ηi(x)ũi(ϕi(x)) + η0(x)u(x)

=
m∑
i=1

ηi(x)u(ϕ
−1
i (ϕi(x))) + η0(x)u(x) =

m∑
i=1

ηi(x)u(x) + η0(x)u(x)

=

(
m∑
i=0

ηi(x)

)
u(x) = u(x).

This completes the proof of the Extension Theorem. �

Remark 1.3.2 Notice that the Extension Theorem actually implies an im-
proved version of the Approximation Theorem under stronger assumption on
∂Ω (be Ck instead of C1). From the Extension Theorem, one can immediately
derive:

Corollary 1.3.1 Assume that Ω is bounded and ∂Ω is Ck. Let O be an open
set containing Ω̄. Let

Oϵ := {x ∈ Rn | dist(x,O) ≤ ϵ}.

Then the linear operator

Jϵ(E(u)) :W k,p(Ω)→C∞
0 (Oϵ)

is bounded, and for each u ∈W k,p(Ω), we have

∥Jϵ(E(u))− u∥Wk,p(Ω)→0 , as ϵ→0.

Here, as compared to the previous approximation theorems, the improvement
is that one can write out the explicit form of the approximation.

1.4 Sobolev Embeddings

When we seek weak solutions of partial differential equations, we start with
functions in a Sobolev space W k,p. Naturally, we would like to know whether
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or not the functions in this space also automatically belong to some other
spaces. The following theorem answers the question and at the same time
provides inequalities among the relevant norms.

Theorem 1.4.1 (General Sobolev Inequalities).

Assume Ω is bounded and has a C1 boundary. Let u ∈W k,p(Ω).

(i) If k < n
p , then u ∈ Lq(Ω) with 1

q = 1
p − k

n and there exists a constant
C such that

∥u∥Lq(Ω) ≤ C∥u∥Wk,p(Ω)

(ii) If k > n
p , then u ∈ Ck−[np ]−1,γ(Ω), and there exists a constant C, such

that

∥u∥
C

k−[n
p

]−1,γ
(Ω)

≤ C∥u∥Wk,p(Ω),

where

γ =

{
1 +

[
n
p

]
− n

p , if np is not an integer

any positive number < 1, if np is an integer .

Here, [b] is the integer part of the number b.

The proof of the Theorem is based upon several simpler theorems. We
first consider the functions in W 1,p(Ω). From the definition, apparently these
functions belong to Lq(Ω) for 1 ≤ q ≤ p. Naturally, one would expect more,
and what is more meaningful is to find out how large this q can be. And to
control the Lq norm for larger q by W 1,p norm–the norm of the derivatives

∥Du∥Lp(Ω) =

(∫
Ω

|Du|pdx
) 1

p

–would suppose to be more useful in practice.

For simplicity, we start with the smooth functions with compact supports
in Rn. We would like to know for what value of q can we establish the in-
equality

∥u∥Lq(Rn) ≤ C∥Du∥Lp(Rn), (1.26)

with constant C independent of u ∈ C∞
0 (Rn). Now suppose (1.26) holds. Then

it must also be true for the re-scaled function of u:

uλ(x) = u(λx),

that is
∥uλ∥Lq(Rn) ≤ C∥Duλ∥Lp(Rn). (1.27)

By substitution, we have
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Rn

|uλ(x)|qdx =
1

λn

∫
Rn

|u(y)|qdy, and∫
Rn

|Duλ|pdx =
λp

λn

∫
Rn

|Du(y)|pdy.

It follows from (1.27) that

∥u∥Lq(Rn) ≤ Cλ1−
n
p +n

q ∥Du∥Lp(Rn).

Therefore, for C to be independent of u, it is necessary that the power of λ
here be zero, that is,

q =
np

n− p
.

It turns out that this condition is also sufficient, as will be stated in the
following theorem. Here for q to be positive, we must require p < n.

Theorem 1.4.2 (Gagliardo-Nirenberg-Sobolev Inequality).

Assume that 1 ≤ p < n. Then there exists a constant C = C(p, n), such
that

∥u∥Lp∗ (Rn) ≤ C∥Du∥Lp(Rn), u ∈ C1
0 (R

n), (1.28)

where p∗ = np
n−p .

Since any function in W 1,p(Rn) can be approached by a sequence of func-
tions in C1

0 (R
n), we derive immediately:

Corollary 1.4.1 Inequality (1.28) holds for all functions u in W 1,p(Rn).

For functions in W 1,p(Ω), we can extend them to be W 1,p(Rn) functions
by the Extension Theorem and arrive at:

Theorem 1.4.3 Assume that Ω is a bounded, open subset of Rn with C1

boundary. Suppose that 1 ≤ p < n and u ∈ W 1,p(Ω). Then u is in Lp∗(Ω)
and there exists a constant C = C(p, n,Ω), such that

∥u∥Lp∗(Ω) ≤ C∥u∥W 1,p(Ω). (1.29)

In the limiting case as p→n, p∗ := np
n−p→∞. Then one may suspect that

u ∈ L∞ when p = n. Unfortunately, this is true only in dimension one. For
n = 1, from

u(x) =

∫ x

−∞
u′(x)dx,

we derive immediately that
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|u(x)| ≤
∫ ∞

−∞
|u′(x)|dx.

However, for n > 1, it is false. One counter example is u = log log(1 + 1
|x| )

on Ω = B1(0). It belongs to W 1,n(Ω), but not to L∞(Ω). This is a delicate
situation, and we will deal with it later.

Naturally, for p > n, one would expect W 1,p to embed into better spaces.
To get some rough idea what these spaces might be, let us first consider the
simplest case when n = 1 and p > 1. Obviously, for any x, y ∈ R1 with x < y,
we have

u(y)− u(x) =

∫ y

x

u′(t)dt,

and consequently, by the Hölder inequality,

|u(y)− u(x)| ≤
∫ y

x

|u′(t)|dt ≤
(∫ y

x

|u′(t)|pdt
) 1

p

·
(∫ y

x

dt

)1− 1
p

.

It follows that
|u(y)− u(x)|
|y − x|1−

1
p

≤
(∫ ∞

−∞
|u′(t)|pdt

) 1
p

.

Taking the supremum over all pairs x, y in R1, the left hand side of the above
inequality is the norm in the Hölder space C0,γ(R1) with γ = 1 − 1

p . This is
indeed true in general, and we have:

Theorem 1.4.4 (Morrey’s Inequality).

Assume n < p ≤ ∞. Then there exists a constant C = C(p, n) such that

∥u∥C0,γ(Rn) ≤ C∥u∥W 1,p(Rn), u ∈ C1(Rn)

where γ = 1− n
p .

To establish an inequality like (1.28), we follow two basic principles.

First, we consider the special case where Ω = Rn. Instead of dealing with
functions in W k,p, we reduce the proof to functions with enough smoothness
(which is just Theorem 1.4.2).

Secondly, we deal with general domains by extending functions u ∈
W 1,p(Ω) to W 1,p(Rn) via the Extension Theorem.

Here, one sees that Theorem 1.4.2 is the ‘key,’ and inequality (1.28) pro-
vides the foundation for the proof of the Sobolev embedding. Often, the proof
of (1.28) is called a ‘hard analysis’, and the steps leading from (1.28) to (1.29)
are called ‘soft analysis’. In the following, we will show the ‘soft’ parts first
and then the ‘hard’ ones. First, we will assume that Theorem 1.4.2 is true
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and derive Corollary 1.4.1 and Theorem 1.4.3. Then, we will prove Theorem
1.4.2.

The Proof of Corollary 1.4.1.

Given any function u ∈W 1,p(Rn), by the Approximation Theorem, there
exists a sequence {uk} ⊂ C∞

0 (Rn) such that ∥u−uk∥W 1,p(Rn) → 0 as k → ∞.

Applying Theorem 1.4.2, we obtain

∥ui − uj∥Lp∗ (Rn) ≤ C∥ui − uj∥W 1,p(Rn) → 0, as i, j → ∞.

Thus {uk} also converges to u in Lp
∗
(Rn). Consequently, we arrive at

∥u∥Lp∗ (Rn) = lim ∥uk∥Lp∗ (Rn) ≤ limC∥uk∥W 1,p(Rn) = C∥u∥W 1,p(Rn).

This completes the proof of the Corollary. �

The Proof of Theorem 1.4.3.

Now for functions in W 1,p(Ω), to apply inequality (1.27), we first extend
them to be functions with compact supports in Rn. More precisely, let O be
an open set that covers Ω. By the Extension Theorem (Theorem 1.3.6), for
every u in W 1,p(Ω), there exists a function ũ in W 1,p

0 (O), such that

ũ = u, almost everywhere in Ω;

moreover, there exists a constant C1 = C1(p, n,Ω,O), such that

∥ũ∥W 1,p(O) ≤ C1∥u∥W 1,p(Ω). (1.30)

Now we can apply the Gagliardo-Nirenberg-Sobolev inequality to ũ to derive

∥u∥Lp∗ (Ω) ≤ ∥ũ∥Lp∗ (O) ≤ C∥ũ∥W 1,p(O) ≤ CC1∥u∥W 1,p(Ω).

This completes the proof of the Theorem. �

The Proof of Theorem 1.4.2.

We first establish the inequality for p = 1, i.e., we prove(∫
Rn

|u|
n

n−1 dx

)n−1
n

≤
∫
Rn

|Du|dx. (1.31)

Then we will apply (1.31) to |u|γ for a properly chosen γ > 1 to extend the
inequality to the case when p > 1.

We need
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Lemma 1.4.1 (General Hölder Inequality). Assume that

ui ∈ Lpi(Ω) for i = 1, 2, · · · ,m

and
1

p1
+

1

p2
+ · · ·+ 1

pm
= 1.

Then ∫
Ω

|u1u2 · · ·um|dx ≤
m∏
i

(∫
Ω

|ui|pidx
) 1

pi

. (1.32)

The proof can be obtained by applying induction to the usual Hölder inequal-
ity for two functions.

Now we are ready to prove the Theorem.

Step 1. The case p = 1.

To better illustrate the idea, we first derive inequality (1.31) for n = 2;
that is, we prove ∫

R2

|u(x)|2dx ≤
(∫

R2

|Du|dx
)2

. (1.33)

Since u has a compact support, we have

u(x) =

∫ x1

−∞

∂u

∂y1
(y1, x2)dy1.

It follows that

|u(x)| ≤
∫ ∞

−∞
|Du(y1, x2)|dy1.

Similarly, we have

|u(x)| ≤
∫ ∞

−∞
|Du(x1, y2)|dy2.

The above two inequalities together imply that

|u(x)|2 ≤
∫ ∞

−∞
|Du(y1, x2)|dy1 ·

∫ ∞

−∞
|Du(x1, y2)|dy2.

Now, integrating both sides of the above inequality with respect to x1 and x2
from −∞ to ∞, we arrive at (1.33).

Then we deal with the general situation when n > 2. We write

u(x) =

∫ xi

−∞

∂u

∂yi
(x1, · · · , xi−1, yi, xi+1, · · · , xn)dyi, i = 1, 2, · · ·n.

Consequently,
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|u(x)| ≤
∫ ∞

−∞
|Du(x1, · · · , yi, · · · , xn)|dyi, i = 1, 2, · · ·n.

And it follows that

|u(x)|
n

n−1 ≤
n∏
i=1

(∫ ∞

−∞
|Du(x1, · · · , yi, · · · , xn)|dyi

) 1
n−1

.

Integrating both sides with respect to x1 and applying the general Hölder
inequality (1.32), we obtain∫ ∞

−∞
|u|

n
n−1 dx1 ≤

(∫ ∞

−∞
|Du|dy1

) 1
n−1

∫ ∞

−∞

n∏
i=2

(∫ ∞

−∞
|Du|dyi

) 1
n−1

dx1

≤
(∫ ∞

−∞
|Du|dy1

) 1
n−1

(
n∏
i=2

∫ ∞

−∞

∫ ∞

−∞
|Du|dx1dyi

) 1
n−1

.

Then integrate the above inequality with respect to x2. We have∫ ∞

−∞

∫ ∞

−∞
|u|

n
n−1 dx1dx2 ≤

(∫ ∞

−∞

∫ ∞

−∞
|Du|dx1dy2

) 1
n−1

×
∫ ∞

−∞

{(∫ ∞

−∞
|Du|dy1

) 1
n−1

·
n∏
i=3

(∫ ∞

−∞

∫ ∞

−∞
|Du|dx1dyi

) 1
n−1

}
dx2.

Again, applying the General Hölder Inequality, we arrive at∫ ∞

−∞

∫ ∞

−∞
|u|

n
n−1 dx1dx2

≤
(∫ ∞

−∞

∫ ∞

−∞
|Du|dy1dx2

) 1
n−1

(∫ ∞

−∞

∫ ∞

−∞
|Du|dx1dy2

) 1
n−1

×
n∏
i=3

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|Du|dx1dx2dyi

) 1
n−1

.

Continuing this way by integrating with respect to x3, · · · , xn−1, we deduce∫ ∞

−∞
· · ·
∫ ∞

−∞
|u|

n
n−1 dx1 · · · dxn−1

≤
(∫ ∞

−∞
· · ·
∫ ∞

−∞
|Du|dy1dx2 · · · dxn−1

) 1
n−1

×
(∫ ∞

−∞
· · ·
∫ ∞

−∞
|Du|dx1dy2dx3 · · · dxn−1

) 1
n−1

· · ·

×
(∫ ∞

−∞
· · ·
∫ ∞

−∞
|Du|dx1 · · · dxn−2dyn−1

) 1
n−1

(∫
Rn

|Du|dx
) 1

n−1

.
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Finally, integrating both sides with respect to xn and applying the general
Hölder inequality, we obtain∫

Rn

|u|
n

n−1 dx ≤
(∫

Rn

|Du|dx
) n

n−1

.

This verifies (1.31).

Exercise 1.4.1 Write your own proof with all details for the cases n = 3 and
n = 4.

Step 2. The Case p > 1.

Applying (1.31) to the function |u|γ with γ > 1 to be chosen later, and by
the Hölder inequality, we have(∫

Rn

|u|
γn
n−1 dx

)n−1
n

≤
∫
Rn

|D(|u|γ)|dx = γ

∫
Rn

|u|γ−1|Du|dx

≤ γ

(∫
Rn

|u|
γn
n−1 dx

) (γ−1)(n−1)
γn

(∫
Rn

|Du|
γn

γ+n−1 dx

) γ+n−1
γn

.

It follows that(∫
Rn

|u|
γn
n−1 dx

)n−1
γn

≤ γ

(∫
Rn

|Du|
γn

γ+n−1 dx

) γ+n−1
γn

.

Now choose γ, so that
γn

γ + n− 1
= p, that is

γ =
p(n− 1)

n− p
,

we obtain (∫
Rn

|u|
np

n−p dx

)n−p
np

≤ γ

(∫
Rn

|Du|pdx
) 1

p

.

This completes the proof of the Theorem. �

The Proof of Theorem 1.4.4 (Morrey’s inequality).

We will establish two inequalities

sup
Rn

|u| ≤ C∥u∥W 1,p(Rn), (1.34)

and

sup
x ̸=y

|u(x)− u(y)|
|x− y|1−n/p

≤ C∥Du∥Lp(Rn). (1.35)
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Both of them can be derived from the following

1

|Br(x)|

∫
Br(x)

|u(y)− u(x)|dy ≤ C

∫
Br(x)

|Du(y)|
|y − x|n−1

dy, (1.36)

where |Br(x)| is the volume of Br(x). We will carry the proof out in three
steps. In Step 1, we prove (1.36), and in Step 2 and Step 3, we verify (1.34)
and (1.35), respectively.

Step 1. We start from

u(y)− u(x) =

∫ 1

0

d

dt
u(x+ t(y − x))dt =

∫ s

0

Du(x+ τω) · ωdτ,

where

ω =
y − x

|x− y|
, s = |x− y|, and hence y = x+ sω.

It follows that

|u(x+ sω)− u(x)| ≤
∫ s

0

|Du(x+ τω)|dτ.

Integrating both sides with respect to ω on the unit sphere ∂B1(0), then
converting the integral on the right hand side from polar to rectangular coor-
dinates, we obtain∫

∂B1(0)

|u(x+ sω)− u(x)|dσ ≤
∫ s

0

∫
∂B1(0)

|Du(x+ τω)|dσdτ

=

∫ s

0

∫
∂B1(0)

|Du(x+ τω)|τ
n−1

τn−1
dσdτ

=

∫
Bs(x)

|Du(z)|
|x− z|n−1

dz.

Multiplying both sides by sn−1, integrating with respect to s from 0 to r, and
taking into account that the integrand on the right hand side is non-negative,
we arrive at ∫

Br(x)

|u(y)− u(x)|dy ≤ rn

n

∫
Br(x)

|Du(y)|
|x− y|n−1

dy.

This verifies (1.36).

Step 2. For each fixed x ∈ Rn, we have

|u(x)| = 1

|B1(x)|

∫
B1(x)

|u(x)|dy

≤ 1

|B1(x)|

∫
B1(x)

|u(x)− u(y)|dy + 1

|B1(x)|

∫
B1(x)

|u(y)|dy

= I1 + I2. (1.37)
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By (1.36) and the Hölder inequality, we deduce

I1 ≤ C

∫
B1(x)

|Du(y)|
|x− y|n−1

dy

≤ C

(∫
Rn

|Du|pdy
)1/p

(∫
B1(x)

dy

|x− y|
(n−1)p
p−1

dy

) p−1
p

≤ C1

(∫
Rn

|Du|pdy
)1/p

. (1.38)

Here we have used the condition that p > n, so that (n−1)p
p−1 < n, and hence

the integral ∫
B1(x)

dy

|x− y|
(n−1)p
p−1

is finite.

Also it is obvious that

I2 ≤ C∥u∥Lp(Rn). (1.39)

Now (1.34) is an immediate consequence of (1.37), (1.38), and (1.39).

Step 3. For any pair of fixed points x and y in Rn, let r = |x − y| and
D = Br(x) ∩Br(y). Then

|u(x)− u(y)| ≤ 1

|D|

∫
D

|u(x)− u(z)|dz + 1

|D|

∫
D

|u(z)− u(y)|dz. (1.40)

Again by (1.36), we have

1

|D|

∫
D

|u(x)− u(z)|dz ≤ C

|Br(x)|

∫
Br(x)

|u(x)− u(z)|dz

≤ C

(∫
Rn

|Du|pdz
)1/p

(∫
Br(x)

dz

|x− z|
(n−1)p
p−1

) p−1
p

= Cr1−n/p∥Du∥Lp(Rn). (1.41)

Similarly,
1

|D|

∫
D

|u(z)− u(y)|dz ≤ Cr1−n/p∥Du∥Lp(Rn). (1.42)

Now (1.40), (1.41), and (1.42) yield

|u(x)− u(y)| ≤ C|x− y|1−n/p∥Du∥Lp(Rn).

This implies (1.35) and thus completes the proof of the Theorem. �
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The Proof of Theorem 1.4.1 (the General Sobolev Inequality).

(i) Assume that u ∈ W k,p(Ω) with k <
n

p
. We want to show that u ∈

Lq(Ω) and
∥u∥Lq(Ω) ≤ C∥u∥Wk,p(Ω) (1.43)

with 1
q = 1

p −
k
n . This can be done by applying Theorem 1.4.3 successively on

the integer k. Again denote p∗ = np
n−p , then

1
p∗ = 1

p−
1
n . For |α| ≤ k−1, Dαu ∈

W 1,p(Ω). By Theorem 1.4.3, we have Dαu ∈ Lp
∗
(Ω), thus u ∈ W k−1,p∗(Ω)

and
∥u∥Wk−1,p∗ (Ω) ≤ C1∥u∥Wk,p(Ω).

Applying Theorem 1.4.3 again to W k−1,p∗(Ω), we have u ∈W k−2,p∗∗(Ω) and

∥u∥Wk−2,p∗∗ (Ω) ≤ C2∥u∥Wk−1,p∗ (Ω) ≤ C2C1∥u∥Wk,p(Ω),

where p∗∗ = np∗
n−p∗ , or

1

p∗∗
=

1

p∗
− 1

n
= (

1

p
− 1

n
)− 1

n
=

1

p
− 2

n
.

Continuing this way k times, we arrive at (1.43).

(ii) Now assume that k >
n

p
. Recall that in the Morrey’s inequality

∥u∥C0,γ(Ω) ≤ C∥u∥W 1,p(Ω), (1.44)

we require that p > n. However, in our situation, this condition is not neces-
sarily met. To remedy this, we can use the result in the previous step. We can
first decrease the order of differentiation to increase the power of summability.
More precisely, we will try to find a smallest integer m, such that

W k,p(Ω) ↪→W k−m,q(Ω),

with q > n. That is, we want

q =
np

n−mp
> n,

and equivalently,

m >
n

p
− 1.

Obviously, the smallest such integer m is

m =

[
n

p

]
.
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For this choice of m, we can apply Morrey’s inequality (1.44) to Dαu, with
any |α| ≤ k −m− 1 to obtain

∥Dαu∥C0,γ(Ω) ≤ C1∥u∥Wk−m,q(Ω) ≤ C1C2∥u∥Wk,p(Ω).

Or equivalently,
∥u∥

C
k−[np ]−1,γ

(Ω)
≤ C∥u∥Wk,p(Ω).

Here, when
n

p
is not an integer,

γ = 1− n

q
= 1 +

[
n

p

]
− n

p
.

While
n

p
is an integer, we have m =

n

p
, and in this case, q can be any number

> n, which implies that γ can be any positive number < 1.

This completes the proof of the Theorem. �

1.5 Compact Embedding

In the previous section, we proved that W 1,p(Ω) is embedded into Lp
∗
(Ω)

with p∗ = np
n−p . Obviously, for q < p∗, the embedding of W 1,p(Ω) into Lq(Ω)

is still true, if the region Ω is bounded. Actually, due to the strict inequality
on the exponent, one can expect more, as stated below.

Theorem 1.5.1 (Rellich-Kondrachov Compact Embedding).

Assume that Ω is a bounded open subset in Rn with C1 boundary ∂Ω.
Suppose 1 ≤ p < n. Then for each 1 ≤ q < p∗,W 1,p(Ω) is compactly embedded
into Lq(Ω):

W 1,p(Ω) ↪→↪→ Lq(Ω),

in the sense that

i) there is a constant C, such that

∥u∥Lq(Ω) ≤ C∥u∥W 1,p(Ω) , ∀ u ∈W 1,p(Ω); (1.45)

and

ii) every bounded sequence in W 1,p(Ω) possesses a convergent subsequence
in Lq(Ω).

Proof. The first part–inequality (1.45)– is included in the general Embedding
Theorem. What we need to show is that if {uk} is a bounded sequence in
W 1,p(Ω), then it possesses a convergent subsequence in Lq(Ω). This can be
derived immediately from the following:
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Lemma 1.5.1 Every bounded sequence in W 1,1(Ω) possesses a convergent
subsequence in L1(Ω).

We postpone the proof of the Lemma for a moment and see how it implies
the Theorem.

In fact, assume that {uk} is a bounded sequence in W 1,p(Ω). Then there
exists a subsequence (still denoted by {uk}) which converges weakly to an ele-
ment uo in W

1,p(Ω). By the Sobolev embedding, {uk} is bounded in Lp∗(Ω).
On the other hand, it is also bounded in W 1,1(Ω), since p ≥ 1 and Ω is
bounded. Now, by Lemma 1.5.1, there is a subsequence (still denoted by {uk})
that converges strongly to uo in L1(Ω). Applying the Hölder inequality

∥uk − uo∥Lq(Ω) ≤ ∥uk − uo∥θL1(Ω)∥uk − uo∥1−θLp∗(Ω),

we conclude immediately that {uk} converges strongly to uo in Lq(Ω). This
proves the Theorem.

We now come back to prove the Lemma. Let {uk} be a bounded sequence
in W 1,1(Ω). We will show the strong convergence of this sequence in three
steps with the help of a family of mollifiers

uϵk(x) =

∫
Ω

jϵ(y)uk(x− y)dy.

First, we show that

uϵk→uk in L1(Ω) as ϵ→0 , uniformly in k. (1.46)

Then, for each fixed ϵ > 0, we prove that

there is a subsequence of {uϵk} which converges uniformly . (1.47)

Finally, corresponding to the above convergent sequence {uϵk}, we extract
diagonally a subsequence of {uk} which converges strongly in L1(Ω).

Based on the Extension Theorem, we may assume, without loss of gener-
ality, that Ω = Rn, the sequence of functions {uk} all have compact support
in a bounded open set G ⊂ Rn, and

∥uk∥W 1,1(G) ≤ C <∞ , for all k = 1, 2, · · · .

Since every W 1,1 function can be approached by a sequence of smooth
functions, we may also assume that each uk is smooth.

Step 1. From the property of mollifiers, we have
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uϵk(x)− uk(x) =

∫
B1(0)

j(y)[uk(x− ϵy)− uk(x)]dy

=

∫
B1(0)

j(y)

∫ 1

0

d

dt
uk(x− ϵty)dt dy

= −ϵ
∫
B1(0)

j(y)

∫ 1

0

Duk(x− ϵty)dt y dy.

Integrating with respect to x and changing the order of integration, we
obtain

∥uϵk − uk∥L1(G) ≤ ϵ

∫
B1(0)

j(y)

∫ 1

0

∫
G

|Duk(x− ϵty)|dx dt dy

≤ ϵ

∫
G

|Duk(z)|dz ≤ ϵ∥uk∥W 1,1(G). (1.48)

It follows that

∥uϵk − uk∥L1(G)→0 , as ϵ→0 , uniformly in k. (1.49)

Step 2. Now fix an ϵ > 0. Then for all x ∈ Rn and for all k = 1, 2, · · · , we
have

|uϵk(x)| ≤
∫
Bϵ(x)

jϵ(x− y)|uk(y)|dy

≤ ∥jϵ∥L∞(Rn)∥uk∥L1(G) ≤
C

ϵn
<∞. (1.50)

Similarly,

|Duϵk(x)| ≤
C

ϵn+1
<∞. (1.51)

(1.50) and (1.51) imply that, for each fixed ϵ > 0, the sequence {uϵk} is uni-
formly bounded and equi-continuous. Therefore, by the Arzela-Ascoli Theo-
rem (see the Appendix), it possesses a subsequence (still denoted by {uϵk})
which converges uniformly on G, in particular

lim
j,i→∞

∥uϵj − uϵi∥L1(G) = 0. (1.52)

Step 3. Now choose ϵ to be 1, 1/2, 1/3, · · · , 1/k, · · · successively, and denote
the corresponding subsequence that satisfies (1.52) by

u
1/k
k1 , u

1/k
k2 , u

1/k
k3 · · · ,
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for k = 1, 2, 3, · · · . Pick the diagonal subsequence from the above:

{u1/iii } ⊂ {uϵk}.

Then select the corresponding subsequence from {uk}:

u11, u22, u33, · · · .

This is our desired subsequence, because as i, j→∞,

∥uii−ujj∥L1(G) ≤ ∥uii−u1/iii ∥L1(G)+∥u1/iii −u1/jjj ∥L1(G)+∥u1/jjj −ujj∥L1(G)→0 ,

due to the fact that each norm on the right hand side →0.

This completes the proof of the Lemma and hence the Theorem. �

1.6 Other Basic Inequalities

1.6.1 Poincaré’s Inequality

For functions that vanish on the boundary, we have

Theorem 1.6.1 (Poincaré’s Inequality I).

Assume Ω is bounded. Suppose u ∈W 1,p
0 (Ω) for some 1 ≤ p ≤ ∞. Then

∥u∥Lp(Ω) ≤ C∥Du∥Lp(Ω). (1.53)

Remark 1.6.1 i) Now based on this inequality, one can take an equivalent
norm of W 1,p

0 (Ω) as ∥u∥W 1,p
0 (Ω) = ∥Du∥Lp(Ω).

ii) Just for this theorem, one can easily prove it by using the Sobolev
inequality ∥u∥Lp ≤ ∥▽u∥Lq with p = nq

n−q and the Hölder inequality. However,
the one we present in the following is a unified proof that works for both this
and the next theorem.

Proof. For convenience, we abbreviate ∥u∥Lp(Ω) as ∥u∥p. Suppose inequality

(1.53) does not hold, then there exists a sequence {uk} ⊂W 1,p
0 (Ω), such that

∥Duk∥p = 1 , while ∥uk∥p→∞ , as k→∞.

Since C∞
0 (Ω) is dense in W 1,p

0 (Ω), we may assume that {uk} ⊂ C∞
0 (Ω).

Let vk =
uk

∥uk∥p
. Then
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∥vk∥p = 1 , and ∥Dvk∥p→0 .

Consequently, {vk} is bounded inW 1,p(Ω) and hence possesses a subsequence
(still denoted by {vk}) that converges weakly to some vo ∈W 1,p(Ω). From the
compact embedding results in the previous section, {vk} converges strongly
in Lp(Ω) to vo, and therefore

∥vo∥p = 1 . (1.54)

On the other hand, for each ϕ ∈ C∞
0 (Ω),∫

Ω

vϕxidx = lim
k→∞

∫
Ω

vkϕxidx = − lim
k→∞

∫
Ω

vk,xiϕdx = 0.

It follows that
Dvo(x) = 0 , a.e.

Thus vo is a constant. Taking into account that vk ∈ C∞
0 (Ω), we must have

vo ≡ 0. This contradicts with (1.54) and therefore completes the proof of the
Theorem. �

For functions in W 1,p(Ω), which may not be zero on the the boundary, we
have another version of Poincaré’s inequality.

Theorem 1.6.2 (Poincaré Inequality II).

Let Ω be a bounded, connected, and open subset in Rn with C1 boundary.
Let ū be the average of u on Ω. Assume 1 ≤ p ≤ ∞. Then there exists a
constant C = C(n, p,Ω), such that

∥u− ū∥p ≤ C∥Du∥p ,∀u ∈W 1,p(Ω). (1.55)

The proof of this Theorem is similar to the previous one. Instead of letting

vk =
uk

∥uk∥p
, we choose

vk =
uk − ūk

∥uk − ūk∥p
.

Remark 1.6.2 The connectedness of Ω is essential in this version of the
inequality. A simple counter example is when n = 1, Ω = [0, 1] ∪ [2, 3], and

u(x) =

{
−1 for x ∈ [0, 1]
1 for x ∈ [2, 3] .
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1.6.2 The Classical Hardy-Littlewood-Sobolev Inequality

Theorem 1.6.3 (Hardy-Littlewood-Sobolev Inequality).

Let 0 < λ < n and s, r > 1 such that

1

r
+

1

s
+
λ

n
= 2.

Assume that f ∈ Lr(Rn) and g ∈ Ls(Rn). Then∫
Rn

∫
Rn

f(x)|x− y|−λg(y)dxdy ≤ C(n, s, λ)||f ||r||g||s (1.56)

where

C(n, s, λ) =
n|Bn|λ/n

(n− λ)rs

((
λ/n

1− 1/r

)λ/n
+

(
λ/n

1− 1/s

)λ/n)

with |Bn| being the volume of the unit ball in Rn, and where

∥f∥r := ∥f∥Lr(Rn).

Proof. (Adapted from Lieb and Loss’s book [LL] with minor modifications.)

Without loss of generality, we may assume that both f and g are non-
negative and ∥f∥r = 1 = ∥g∥s.

Let

χG(x) =

{
1 if x ∈ G
0 if x ̸∈ G

be the characteristic function of the set G. Then one can see obviously that

f(x) =

∫ ∞

0

χ{f>a}(x) da (1.57)

g(x) =

∫ ∞

0

χ{g>b}(x) db (1.58)

|x|−λ = λ

∫ ∞

0

c−λ−1χ{|x|<c}(x) dc (1.59)

To see the last identity, one may first write

|x|−λ =

∫ ∞

0

χ{|x|−λ>c̃}(x) dc̃,

and then let c̃ = c−λ.



1.6 Other Basic Inequalities 39

Substituting (1.57), (1.58), and (1.59) into the left hand side of (1.56), we
have

I :=

∫
Rn

∫
Rn

f(x)|x− y|−λg(y) dx dy =

λ

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫
Rn

∫
Rn

c−λ−1χ{f>a}(x)χ{|x|<c}(x− y)χ{g>b}(y) dx dy dc db da

= λ

∫ ∞

0

∫ ∞

0

∫ ∞

0

c−λ−1I(a, b, c) dc db da. (1.60)

Let
u(c) = |Bn|cn,

the volume of the ball of radius c, and let

v(a) =

∫
Rn

χ{f>a}(x) dx , w(b) =

∫
Rn

χ{g>b}(y) dy,

the measure of the sets {x | f(x) > a} and {y | g(y) > b}, respectively. Then
we can express the norms as

∥f∥rr = r

∫ ∞

0

ar−1v(a) da = 1 and ∥g∥ss = s

∫ ∞

0

bs−1w(b) db = 1. (1.61)

It is easy to see that

I(a, b, c) ≤
∫
Rn

∫
Rn

χ{|x|<c}(x− y)χ{g>b}(y) dx dy

≤
∫
Rn

u(c)χ{g>b}(y) dy = u(c)w(b)

Similarly, one can show that I(a, b, c) is bounded above by other pairs and
arrive at

I(a, b, c) ≤ min{u(c)w(b), u(c)v(a), v(a)w(b)}. (1.62)

We integrate with respect to c first. By (1.62), we have∫ ∞

0

c−λ−1I(a, b, c) dc

≤
∫
u(c)≤v(a)

c−λ−1w(b)u(c) dc+

∫
u(c)>v(a)

c−λ−1w(b)v(a) dc

= w(b)|Bn|
∫ (v(a)/|Bn|)1/n

0

c−λ−1+n dc+ w(b)v(a)

∫ ∞

(v(a)/|Bn|)1/n
c−λ−1 dc

=
|Bn|λ/n

n− λ
w(b)v(a)1−λ/n +

|Bn|λ/n

λ
w(b)v(a)1−λ/n

=
n|Bn|λ/n

λ(n− λ)
w(b)v(a)1−λ/n (1.63)
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Exchanging v(a) with w(b) in the second line of (1.63), we also obtain∫ ∞

0

c−λ−1I(a, b, c) dc

≤
∫
u(c)≤w(b)

c−λ−1v(a)u(c) dc+

∫
u(c)>w(b))

c−λ−1w(b)v(a) dc

≤ n|Bn|λ/n

λ(n− λ)
v(a)w(b)1−λ/n (1.64)

In view of (1.61), we split the b-integral into two parts, one from 0 to ar/s

and the other from ar/s to ∞. By virtue of (1.60), (1.63), and (1.64), we derive

I ≤ n

n− λ
|Bn|λ/n ×{∫ ∞

0

v(a)

∫ ar/s

0

w(b)
n−λ
n dbda+

∫ ∞

0

v(a)
n−λ
n

∫ ∞

ar/s
w(b)dbda

}
(1.65)

To estimate the first integral in (1.65), we use Hölder inequality with
m = (s− 1)(1− λ/n)∫ ar/s

0

w(b)1−λ/nbmb−m db

≤

(∫ ar/s

0

w(b)bs−1 db

)1−λ/n(∫ ar/s

0

b−mn/λ db

)λ/n

≤

(∫ ar/s

0

w(b)bs−1 db

)1−λ/n

·
(

λ

n− s(n− λ)

)λ/n
ar−1; (1.66)

because mn/λ < 1 and
1

r
+

1

s
+
λ

n
= 2.

It follows that the first integral in (1.65) is bounded above by(
λ

n− s(n− λ)

)λ/n(∫ ∞

0

v(a)ar−1 da

)(∫ ∞

0

w(b)bs−1 db

)1−λ/n

=
1

rs

(
λ/n

1− 1/r

)λ/n
. (1.67)

To estimate the second integral in (1.65), we first rewrite it as∫ ∞

0

w(b)

∫ bs/r

0

v(a)1−λ/n da db,
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then an analogous computation shows that it is bounded above by

1

rs

(
λ/n

1− 1/s

)λ/n
. (1.68)

Now the desired Hardy-Littlewood-Sobolev inequality follows directly from
(1.65), (1.67), and (1.68). �

Theorem 1.6.4 (An Equivalent Form of the Hardy-Littlewood-Sobolev in-
equality)

Let g ∈ L
np

n+αp (Rn) for n
n−α < p <∞. Define

Tg(x) =

∫
Rn

|x− y|α−ng(y)dy.

Then
∥Tg∥p ≤ C(n, p, α)∥g∥ np

n+αp
. (1.69)

Proof. By the classical Hardy-Littlewood-Sobolev inequality, we have

< f, Tg >=< Tf, g >≤ C(n, s, α) ∥f∥r ∥g∥s ,

where < ·, · > is the L2 inner product.

Consequently,

∥Tg∥p = sup
∥f∥r=1

< f, Tg > ≤ C(n, s, α)∥g∥s,

where { 1
p +

1
r = 1

1
r +

1
s = n+α

n .

Solving for s, we arrive at

s =
np

n+ αp
.

This completes the proof of the Theorem. �

Remark 1.6.3 To see the relation between inequality (1.69) and the Sobolev
inequality, let’s rewrite it as

∥Tg∥ nq
n−αq

≤ C∥g∥q (1.70)

with
1 < q :=

np

n+ αp
<
n

α
.
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Let u = Tg. Then one can show that (see [CLO]),

(−△)
α
2 u = g.

Now inequality (1.70) becomes the Sobolev one

∥u∥ nq
n−αq

≤ C∥(−△)
α
2 u∥q.


