All Issues

Volume 42, 2022

Volume 41, 2021

Volume 40, 2020

Volume 39, 2019

Volume 38, 2018

Volume 37, 2017

Volume 36, 2016

Volume 35, 2015

Volume 34, 2014

Volume 33, 2013

Volume 32, 2012

Volume 31, 2011

Volume 30, 2011

Volume 29, 2011

Volume 28, 2010

Volume 27, 2010

Volume 26, 2010

Volume 25, 2009

Volume 24, 2009

Volume 23, 2009

Volume 22, 2008

Volume 21, 2008

Volume 20, 2008

Volume 19, 2007

Volume 18, 2007

Volume 17, 2007

Volume 16, 2006

Volume 15, 2006

Volume 14, 2006

Volume 13, 2005

Volume 12, 2005

Volume 11, 2004

Volume 10, 2004

Volume 9, 2003

Volume 8, 2002

Volume 7, 2001

Volume 6, 2000

Volume 5, 1999

Volume 4, 1998

Volume 3, 1997

Volume 2, 1996

Volume 1, 1995

Discrete and Continuous Dynamical Systems

January 2003 , Volume 9 , Issue 1

Select all articles


A type of homogenization problem
Fanghua Lin and Xiaodong Yan
2003, 9(1): 1-30 doi: 10.3934/dcds.2003.9.1 +[Abstract](2374) +[PDF](308.8KB)
Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao
2003, 9(1): 31-54 doi: 10.3934/dcds.2003.9.31 +[Abstract](2533) +[PDF](283.2KB)
We study the long-time behaviour of the focusing cubic NLS on $\mathbf R$ in the Sobolev norms $H^s$ for $0 < s < 1$. We obtain polynomial growth-type upper bounds on the $H^s$ norms, and also limit any orbital $H^s$ instability of the ground state to polynomial growth at worst; this is a partial analogue of the $H^1$ orbital stability result of Weinstein [27], [26]. In the sequel to this paper we generalize this result to other nonlinear Schrödinger equations. Our arguments are based on the "$I$-method" from earlier papers [9]-[15] which pushes down from the energy norm, as well as an "upside-down $I$-method" which pushes up from the $L^2$ norm.
Positive solutions to a class of quasilinear elliptic equations on $\mathbb R$
Antonio Ambrosetti and Zhi-Qiang Wang
2003, 9(1): 55-68 doi: 10.3934/dcds.2003.9.55 +[Abstract](2989) +[PDF](216.3KB)
We discuss the existence of positive solutions of perturbation to a class of quasilinear elliptic equations on $\mathbb R$.
Heteroclinic orbits and chaotic invariant sets for monotone twist maps
Tifei Qian and Zhihong Xia
2003, 9(1): 69-95 doi: 10.3934/dcds.2003.9.69 +[Abstract](3027) +[PDF](293.0KB)
We consider the monotone twist map $\bar f$ on $(\mathbb R/\mathbb Z)\times R$, itslift $f$ on $R^2$ and its associated variational principle $h:\mathbb R^2\to\mathbb R$ through its generating function. By working with the variationalprinciple $h$, we first show that for an adjacent minimal chain$\{(u^k, v^k)\}_{k=s}^t$ of fixed points of $f$, if there exists abarrier $B_k$ for each adjacent minimal pair $u^k < u^{k+1}$, $ s \le k \le {t-1} $, then there exists a heteroclinic orbit between $(u^s, v^s)$ and$(u^t, v^t)$, then by assuming that there is a barrier for any twoneighboring globally minimal critical points and $m$ is sufficientlylarge, we construct an invariant set $\Lambda^m\subset (\mathbb R/\mathbb Z)\times\mathbb R$ such that the shift map of the $n$-symbol space is a factor of$\bar f^m|_{\Lambda^m}$, where $n$ is the total number of the globallyminimal fixed points of $\bar f$.
The primitive equations on the large scale ocean under the small depth hypothesis
Changbing Hu, Roger Temam and Mohammed Ziane
2003, 9(1): 97-131 doi: 10.3934/dcds.2003.9.97 +[Abstract](2626) +[PDF](325.6KB)
In this article we study the global existence of strong solutions of the Primitive Equations (PEs) for the large scale ocean under the small depth hypothesis. The small depth hypothesis implies that the domain $M_\varepsilon$ occupied by the ocean is a thin domain, its thickness parameter $\varepsilon$ is the aspect ratio between its vertical and horizontal scales. Using and generalizing the methods developed in [23], [24], we establish the global existence of strong solutions for initial data and volume and boundary 'forces', which belong to large sets in their respective phase spaces, provided $\varepsilon$ is sufficiently small. Our proof of the existence results for the PEs is based on precise estimates of the dependence of a number of classical constants on the thickness $\varepsilon$ of the domain. The extension of the results to the atmosphere or the coupled ocean and atmosphere or to other relevant boundary conditions will appear elsewhere.
Interaction estimates and Glimm functional for general hyperbolic systems
Stefano Bianchini
2003, 9(1): 133-166 doi: 10.3934/dcds.2003.9.133 +[Abstract](2608) +[PDF](377.2KB)
We consider the problem of writing Glimm type interaction estimates for the hyperbolic system

$u_t + A(u) u_x = 0.\qquad\qquad (0.1)$

The aim of these estimates is to prove that there is Glimm-type functional $Q(u)$ such that

Tot.Var.$(u) + C_1 Q(u)$ is lower semicontinuous w.r.t. $L^1-$ norm, $\qquad\qquad (0.2)$

with $C_1$ sufficiently large, and $u$ with small BV norm.
In the first part we analyze the more general case of quasilinear hyperbolic systems. We show that in general this result is not true if the system is not in conservation form: there are Riemann solvers, identified by selecting an entropic conditions on the jumps, which do not satisfy the Glimm interaction estimate (0.2). Next we consider hyperbolic systems in conservation form, i.e. $A(u) = Df(u)$. In this case, there is only one entropic Riemann solver, and we prove that this particular Riemann solver satisfies (0.2) for a particular functional $Q$, which we construct explicitly. The main novelty here is that we suppose only the Jacobian matrix $Df(u)$ strictly hyperbolic, without any assumption on the number of inflection points of $f$.
These results are achieved by an analysis of the growth of Tot.Var.$(u)$ when nonlinear waves of (0.1) interact, and the introduction of a Glimm type functional $Q$, similar but not equivalent to Liu's interaction functional [11].

Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity
Gui-Qiang Chen and Bo Su
2003, 9(1): 167-192 doi: 10.3934/dcds.2003.9.167 +[Abstract](2992) +[PDF](299.2KB)
The uniqueness of classical semicontinuous viscosity solutions of the Cauchy problem for Hamilton-Jacobi equations with convex Hamiltonians $H=H(Du)$ is established, provided the discontinuous initial value function $\varphi(x)$ is continuous outside a set $\Gamma$ of measure zero and satisfies

(*)$ \qquad\qquad \varphi(x)\ge\varphi_{\star \star}(x) \equiv \lim$inf$_{y\rightarrow x, y\in\mathbb R^d\backslash\Gamma}\varphi(y).

The regularity of discontinuous solutions to Hamilton-Jacobi equations with locally strictly convex Hamiltonians is proved: The discontinuous solutions with almost everywhere continuous initial data satisfying (*) become Lipschitz continuous after finite time. The $L^1$-accessibility of initial data and a comparison principle for discontinuous solutions are shown. The equivalence of semicontinuous viscosity solutions, bi-lateral solutions, $L$-solutions, minimax solutions, and $L^\infty$-solutions is also clarified.

Rigidity of partially hyperbolic actions of property (T) groups
Andrei Török
2003, 9(1): 193-208 doi: 10.3934/dcds.2003.9.193 +[Abstract](2508) +[PDF](265.2KB)
We show that volume-preserving perturbations of some product actions of property (T) groups exhibit a "foliation rigidity" property, which reduces the partially hyperbolic action to a family of hyperbolic actions. This is used to show that certain partially hyperbolic actions are locally rigid.
A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles
Russell Johnson and Francesca Mantellini
2003, 9(1): 209-224 doi: 10.3934/dcds.2003.9.209 +[Abstract](2764) +[PDF](252.2KB)
We study the phenomenon of stability breakdown for non-autonomous differential equations whose time dependence is determined by a minimal, strictly ergodic flow. We find that, under appropriate assumptions, a new attractor may appear. More generally, almost automorphic minimal sets are found.

2021 Impact Factor: 1.588
5 Year Impact Factor: 1.568
2021 CiteScore: 2.4




Special Issues

Email Alert

[Back to Top]