
ISSN:
1078-0947
eISSN:
1553-5231
All Issues
Discrete and Continuous Dynamical Systems
April 2020 , Volume 40 , Issue 4
Select all articles
Export/Reference:
We consider skew tent maps
We show that
In hyperbolic dynamics, a well-known result is: every hyperbolic Lyapunov stable set, is attracting; it's natural to wonder if this result is maintained in the sectional-hyperbolic dynamics. This question is still open, although some partial results have been presented. We will prove that all sectional-hyperbolic transitive Lyapunov stable set of codimension one of a vector field
In this paper, we consider an expanding flow of smooth, closed, uniformly convex hypersurfaces in Euclidean
We study the orientation flocking for the deterministic counterpart of a stochastic agent-based model introduced by Degond, Frouvelle and Merino-Aceituno in 2017, where the orientation is defined as a
We prove the global well-posedness of the free interface problem for the two-phase incompressible Euler Equations with damping for the small initial data, where the effect of surface tension is included on the free surfaces. Moreover, the solution decays exponentially to the equilibrium.
In this paper, we study the quasi-shadowing property for partially hyperbolic flows. A partially hyperbolic flow
This paper investigates a reaction-advection-diffusion system that describes the evolution of population distributions of two competing species in an enclosed bounded habitat. Here the competition relationships are assumed to be of the Beddington–DeAngelis type. In particular, we consider a situation where first species disperses by a combination of random walk and directed movement along with the population distribution of the second species which disperse randomly within the habitat. We obtain a set of results regarding the qualitative properties of this advective competition system. First of all, we show that this system is globally well-posed and its solutions are classical and uniformly bounded in time. Then we study its steady states in a one-dimensional interval by examining the combined effects of diffusion and advection on the existence and stability of nonconstant positive steady states of the strongly coupled elliptic system. Our stability result of these nontrivial steady states provides a selection mechanism for stable wavemodes of the time-dependent system. Moreover, in the limit of diffusion rates, the steady states of this fully elliptic system can be approximated by nonconstant positive solutions of a shadow system that admits boundary spikes and layers. Furthermore, for the fully elliptic system, we construct solutions with a single boundary spike or an inverted boundary spike, i.e., the first species concentrates on a boundary point while the second species dominates the remaining habitat. These spatial structures model the spatial segregation phenomenon through interspecific competitions. Finally, we perform some numerical simulations to illustrate and support our theoretical findings.
We consider generalized models on coral broadcast spawning phenomena involving diffusion, advection, chemotaxis, and reactions when egg and sperm densities are different. We prove the global-in-time existence of the regular solutions of the models as well as their temporal decays in two and three dimensions. We also show that the total masses of egg and sperm density have positive lower bounds as time tends to infinity in three dimensions.
In this paper, we study saturable nonlinear Schrödinger equations with nonzero intensity function which makes the nonlinearity become not superlinear near zero. Using the Nehari manifold and the Lusternik-Schnirelman category, we prove the existence of multiple positive solutions for saturable nonlinear Schrödinger equations with nonzero intensity function which satisfies suitable conditions. The ideas contained here might be useful to obtain multiple positive solutions of the other non-homogeneous nonlinear elliptic equations.
In this paper, we investigate the asymptotic behavior of local solutions for the semilinear elliptic system
In this paper, we are concerned with the global smooth solution problem for 3-D compressible isentropic Euler equations with vanishing density in an infinitely expanding ball. It is well-known that the classical solution of compressible Euler equations generally forms the shock as well as blows up in finite time due to the compression of gases. However, for the rarefactive gases, it is expected that the compressible Euler equations will admit global smooth solutions. We now focus on the movement of compressible gases in an infinitely expanding ball. Because of the conservation of mass, the fluid in the expanding ball becomes rarefied meanwhile there are no appearances of vacuum domains in any part of the expansive ball, which is easily observed in finite time. We will confirm this interesting phenomenon from the mathematical point of view. Through constructing some anisotropy weighted Sobolev spaces, and by carrying out the new observations and involved analysis on the radial speed and angular speeds together with the divergence and rotations of velocity, the uniform weighted estimates on sound speed and velocity are established. From this, the pointwise time-decay estimate of sound speed is obtained, and the smooth gas fluids without vacuum are shown to exist globally.
In this paper, we introduce the concepts of rescaled expansiveness and the rescaled shadowing property for flows on metric spaces which are dynamical properties, and present a spectral decomposition theorem for flows. More precisely, we prove that if a flow is rescaling expansive and has the rescaled shadowing property on a locally compact metric space, then it admits the spectral decomposition. Moreover, we show that if a flow on locally compact metric space has the rescaled shadowing property then its restriction on nonwandering set also has the rescaled shadowing property.
We prove a forward Ergodic Closing Lemma for nonsingular
For transformations with regularly varying property, we identify a class of moduli of continuity related to the local behavior of the dynamics near a fixed point, and we prove that this class is not compatible with the existence of continuous sub-actions. The dynamical obstruction is given merely by a local property. As a natural complement, we also deal with the question of the existence of continuous sub-actions focusing on a particular dynamic setting. Applications of both results include interval maps that are expanding outside a neutral fixed point, as Manneville-Pomeau and Farey maps.
We consider a set of necessary conditions which are efficient heuristics for deciding when a set of Wang tiles cannot tile a group.
Piantadosi [
We consider two other conditions: the first, also given by Piantadosi [
We show that these last two conditions are equivalent. Joining and generalising approaches from both sides, we prove that they are necessary for having a valid tiling of any finitely generated amenable group, confirming a remark of Jeandel [
Recently, in connection with C*-algebra theory, the first author and Danilo Royer introduced ultragraph shift spaces. In this paper we define a family of metrics for the topology in such spaces, and use these metrics to study the existence of chaos in the shift. In particular we characterize all ultragraph shift spaces that have Li-Yorke chaos (an uncountable scrambled set), and prove that such property implies the existence of a perfect and scrambled set in the ultragraph shift space. Furthermore, this scrambled set can be chosen compact, which is not the case for a labelled edge shift (with the product topology) of an infinite graph.
Given a smooth bounded domain
where
This paper studies the existence of subharmonics of arbitrary order in a generalized class of non-autonomous predator-prey systems of Volterra type with periodic coefficients. When the model is non-degenerate it is shown that the Poincaré–Birkhoff twist theorem can be applied to get the existence of subharmonics of arbitrary order. However, in the degenerate models, whether or not the twist theorem can be applied to get subharmonics of a given order might depend on the particular nodal behavior of the several weight function-coefficients involved in the setting of the model. Finally, in order to analyze how the subharmonics might be lost as the model degenerates, the exact point-wise behavior of the
This paper is concerned with the 1-dimensional quintic nonlinear Schrödinger equations with real valued
subject to Dirichlet boundary conditions. By means of normal form theory and an infinite-dimensional Kolmogorov-Arnold-Moser (KAM, for short) theorem, it is proved that the above equation admits a family of elliptic tori where lies small amplitude quasi-periodic solutions with two frequencies of high modes.
We study sensitivity, topological equicontinuity and even continuity in dynamical systems. In doing so we provide a classification of topologically transitive dynamical systems in terms of equicontinuity pairs, give a generalisation of the Auslander-Yorke dichotomy for minimal systems and show there exists a transitive system with an even continuity pair but no equicontinuity point. We define what it means for a system to be eventually sensitive; we give a dichotomy for transitive dynamical systems in relation to eventual sensitivity. Along the way we define a property called splitting and discuss its relation to some existing notions of chaos. The approach we take is topological rather than metric.
In this paper, we investigate a generalized two-component rotational b-family system arising in the rotating fluid with the effect of the Coriolis force. First, we study the persistence properties of the system in weighted
Given an isoparametric function
with
2021
Impact Factor: 1.588
5 Year Impact Factor: 1.568
2021 CiteScore: 2.4
Readers
Authors
Editors
Referees
Librarians
Special Issues
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]