All Issues

Volume 41, 2021

Volume 40, 2020

Volume 39, 2019

Volume 38, 2018

Volume 37, 2017

Volume 36, 2016

Volume 35, 2015

Volume 34, 2014

Volume 33, 2013

Volume 32, 2012

Volume 31, 2011

Volume 30, 2011

Volume 29, 2011

Volume 28, 2010

Volume 27, 2010

Volume 26, 2010

Volume 25, 2009

Volume 24, 2009

Volume 23, 2009

Volume 22, 2008

Volume 21, 2008

Volume 20, 2008

Volume 19, 2007

Volume 18, 2007

Volume 17, 2007

Volume 16, 2006

Volume 15, 2006

Volume 14, 2006

Volume 13, 2005

Volume 12, 2005

Volume 11, 2004

Volume 10, 2004

Volume 9, 2003

Volume 8, 2002

Volume 7, 2001

Volume 6, 2000

Volume 5, 1999

Volume 4, 1998

Volume 3, 1997

Volume 2, 1996

Volume 1, 1995

Discrete & Continuous Dynamical Systems - A

February 2021 , Volume 41 , Issue 2

Select all articles


Symmetry and nonexistence results for a fractional Choquard equation with weights
Anh Tuan Duong, Phuong Le and Nhu Thang Nguyen
2021, 41(2): 489-505 doi: 10.3934/dcds.2020265 +[Abstract](840) +[HTML](301) +[PDF](454.71KB)

Let \begin{document}$ u $\end{document} be a nonnegative solution to the equation

where \begin{document}$ n \ge 2 $\end{document}, \begin{document}$ 0 < \alpha < 2 $\end{document}, \begin{document}$ 0 < \beta < n $\end{document} and \begin{document}$ a>\max\{ -\alpha, -\frac{\alpha+\beta}{2} \} $\end{document}. By exploiting the method of scaling spheres and moving planes in integral forms, we show that \begin{document}$ u $\end{document} must be zero if \begin{document}$ 1\le p<\frac{n+\beta+2a}{n-\alpha} $\end{document} and must be radially symmetric about the origin if \begin{document}$ a<0 $\end{document} and \begin{document}$ \frac{n+\beta+2a}{n-\alpha} \le p \le \frac{n+\beta+a}{n-\alpha} $\end{document}.

The unique measure of maximal entropy for a compact rank one locally CAT(0) space
Russell Ricks
2021, 41(2): 507-523 doi: 10.3934/dcds.2020266 +[Abstract](541) +[HTML](258) +[PDF](433.97KB)

Let \begin{document}$ X $\end{document} be a compact, geodesically complete, locally CAT(0) space such that the universal cover admits a rank one axis. We prove the Bowen-Margulis measure on the space of geodesics is the unique measure of maximal entropy for the geodesic flow, which has topological entropy equal to the critical exponent of the Poincaré series.

Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation
Yuanfen Xiao
2021, 41(2): 525-536 doi: 10.3934/dcds.2020267 +[Abstract](608) +[HTML](248) +[PDF](429.59KB)

We construct a mean Li-Yorke chaotic set along polynomial sequences (the degree of this polynomial is not less than three) with full Hausdorff dimension and full topological entropy for \begin{document}$ \beta $\end{document}-transformation. An uncountable subset \begin{document}$ C $\end{document} is said to be a mean Li-Yorke chaotic set along sequence \begin{document}$ \{a_n\} $\end{document}, if both

hold for any two distinct points \begin{document}$ x $\end{document} and \begin{document}$ y $\end{document} in \begin{document}$ C $\end{document}.

Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains
Lingwei Ma and Zhenqiu Zhang
2021, 41(2): 537-552 doi: 10.3934/dcds.2020268 +[Abstract](567) +[HTML](295) +[PDF](480.81KB)

In this paper, we first establish a narrow region principle for systems involving the fractional Laplacian in unbounded domains, which plays an important role in carrying on the direct method of moving planes. Then combining this direct method with the sliding method, we derive the monotonicity of bounded positive solutions to the following fractional Laplacian systems in unbounded Lipschitz domains \begin{document}$ \Omega $\end{document}

without any decay assumptions on the solution pair \begin{document}$ (u,\,v) $\end{document} at infinity.

Local rigidity of certain solvable group actions on tori
Qiao Liu
2021, 41(2): 553-567 doi: 10.3934/dcds.2020269 +[Abstract](535) +[HTML](253) +[PDF](400.7KB)

In this paper, we study a local rigidity property of \begin{document}$ \mathbb Z \ltimes_\lambda \mathbb R $\end{document} affine action on tori generated by an irreducible toral automorphism and a linear flow along an eigenspace. Such an action exhibits a weak version of local rigidity, i.e., any smooth perturbations close enough to an affine action is smoothly conjugate to the affine action up to constant time change.

Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity
Xinyu Mei, Yangmin Xiong and Chunyou Sun
2021, 41(2): 569-600 doi: 10.3934/dcds.2020270 +[Abstract](618) +[HTML](255) +[PDF](628.24KB)

In this paper, the non-autonomous dynamical behavior of weakly damped wave equation with a sup-cubic nonlinearity is considered in locally uniform spaces. We first prove the global well-posedness of the Shatah-Struwe solutions, then establish the existence of the \begin{document}$ \big(H_{lu}^{1}(\mathbb{R}^{3})\times L_{lu}^{2}(\mathbb{R}^{3}),H_{\rho}^{1}(\mathbb{R}^{3})\times L_{\rho}^{2}(\mathbb{R}^{3})\big) $\end{document}-pullback attractor for the Shatah-Struwe solutions process of this equation. The results are based on the recent extension of Strichartz estimates for the bounded domains.

Maximal factors of order $ d $ of dynamical cubespaces
Jiahao Qiu and Jianjie Zhao
2021, 41(2): 601-620 doi: 10.3934/dcds.2020278 +[Abstract](456) +[HTML](216) +[PDF](435.68KB)

For a dynamical system \begin{document}$ (X, T) $\end{document}, \begin{document}$ l\in\mathbb{N} $\end{document} and \begin{document}$ x\in X $\end{document}, let \begin{document}$ \mathbf{Q}^{[l]}(X) $\end{document} and \begin{document}$ \overline{\mathcal{F}^{[l]}}(x^{[l]}) $\end{document} be the orbit closures of the diagonal point \begin{document}$ x^{[l]} $\end{document} under the parallelepipeds group \begin{document}$ \mathcal{G}^{[l]} $\end{document} and the face group \begin{document}$ \mathcal{F}^{[l]} $\end{document} actions respectively. In this paper, it is shown that for a minimal system \begin{document}$ (X, T) $\end{document} and every \begin{document}$ l\in \mathbb{N}, x\in X $\end{document}, the maximal factors of order \begin{document}$ d $\end{document} of \begin{document}$ (\mathbf{Q}^{[l]}(X), \mathcal{G}^{[l]}) $\end{document} and \begin{document}$ (\overline{\mathcal{F}^{[l]}}(x^{[l]}), \mathcal{F}^{[l]}) $\end{document} are \begin{document}$ (\mathbf{Q}^{[l]}(X_d), \mathcal{G}^{[l]}) $\end{document} and \begin{document}$ (\overline{\mathcal{F}^{[l]}}(\pi(x)^{[l]}), \mathcal{F}^{[l]}) $\end{document} respectively, where \begin{document}$ \pi:X\to X/\mathbf{RP}^{[d]}(X) = X_d, d\in \mathbb{N}\cup\{\infty\} $\end{document} is the factor map and \begin{document}$ \mathbf{RP}^{[d]}(X) $\end{document} is the regionally proximal relation of order \begin{document}$ d $\end{document}.

Singular solutions of a Lane-Emden system
Craig Cowan and Abdolrahman Razani
2021, 41(2): 621-656 doi: 10.3934/dcds.2020291 +[Abstract](522) +[HTML](233) +[PDF](606.07KB)

In this work we consider the existence of positive singular solutions

\begin{document}$ \begin{equation} \left\{ \begin{array}{lcl} \hfill -\Delta u_1 & = & \lambda_1 | \nabla u_2|^p \qquad \mbox{ in } \Omega, \\ \hfill -\Delta u_2 & = & \lambda_2 | \nabla u_1|^q \qquad \mbox{ in } \Omega, \\ \hfill u_1 = u_2 & = & 0 \hfill \mbox{ on } \partial \Omega, \end{array}\right.\;\;\;\;\;\;\;(1) \end{equation} $\end{document}

where \begin{document}$ \Omega $\end{document} is small \begin{document}$ C^2 $\end{document} perturbation of the unit ball \begin{document}$ B_1 $\end{document} in \begin{document}$ \mathbb{R}^N $\end{document} and \begin{document}$ \lambda_i $\end{document} are positive constants. Under suitable conditions on \begin{document}$ p $\end{document} and \begin{document}$ q $\end{document} we prove the existence of positive singular solutions of (1). We also examine the case where one or both of \begin{document}$ u_1,u_2 $\end{document} are Hölder continuous.

Uniform stability estimate for the Vlasov-Poisson-Boltzmann system
Hao Wang
2021, 41(2): 657-680 doi: 10.3934/dcds.2020292 +[Abstract](583) +[HTML](227) +[PDF](465.97KB)

This paper is concerned with the uniform stability estimate to the Cauchy problem of the Vlasov-Poisson-Boltzmann system. Our analysis is based on compensating function introduced by Kawashima and the standard energy method.

Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $
Luca Battaglia, Francesca Gladiali and Massimo Grossi
2021, 41(2): 681-700 doi: 10.3934/dcds.2020293 +[Abstract](460) +[HTML](204) +[PDF](507.79KB)

We consider the following Dirichlet problem

with \begin{document}$ \lambda<0 $\end{document} and \begin{document}$ f $\end{document} non-negative and non-decreasing.

We show existence and uniqueness of solutions \begin{document}$ u_\lambda $\end{document} for any \begin{document}$ \lambda $\end{document} and discuss their asymptotic behavior as \begin{document}$ \lambda\to-\infty $\end{document}. In the expansion of \begin{document}$ u_\lambda $\end{document} large solutions naturally appear.

Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case
Oussama Landoulsi
2021, 41(2): 701-746 doi: 10.3934/dcds.2020298 +[Abstract](484) +[HTML](214) +[PDF](722.86KB)

We consider the focusing \begin{document}$ L^2 $\end{document}-supercritical Schrödinger equation in the exterior of a smooth, compact, strictly convex obstacle \begin{document}$ \Theta \subset \mathbb{R}^3 $\end{document}. We construct a solution behaving asymptotically as a solitary wave on \begin{document}$ \mathbb{R}^3, $\end{document} for large times. When the velocity of the solitary wave is high, the existence of such a solution can be proved by a classical fixed point argument. To construct solutions with arbitrary nonzero velocity, we use a compactness argument similar to the one that was introduced by F.Merle in 1990 to construct solutions of the NLS equation blowing up at several points together with a topological argument using Brouwer's theorem to control the unstable direction of the linearized operator at the soliton. These solutions are arbitrarily close to the scattering threshold given by a previous work of R. Killip, M. Visan and X. Zhang, which is the same as the one on the whole Euclidean space given by S. Roundenko and J. Holmer in the radial case and by the previous authors with T. Duyckaerts in the non-radial case.

Large time behavior of exchange-driven growth
Emre Esentürk and Juan Velazquez
2021, 41(2): 747-775 doi: 10.3934/dcds.2020299 +[Abstract](453) +[HTML](200) +[PDF](565.38KB)

Exchange-driven growth (EDG) is a model in which pairs of clusters interact by exchanging single unit with a rate given by a kernel \begin{document}$ K(j, k) $\end{document}. Despite EDG model's common use in the applied sciences, its rigorous mathematical treatment is very recent. In this article we study the large time behaviour of EDG equations. We show two sets of results depending on the properties of the kernel \begin{document}$ (i) $\end{document} \begin{document}$ K(j, k) = b_{j}a_{k} $\end{document} and \begin{document}$ (ii) $\end{document} \begin{document}$ K(j, k) = ja_{k}+b_{j}+\varepsilon\beta_{j}\alpha_{k} $\end{document}. For type I kernels, under the detailed balance assumption, we show that the system admits unique equilibrium up to a critical mass \begin{document}$ \rho_{s} $\end{document} above which there is no equilibrium. We prove that if the system has an initial mass below \begin{document}$ \rho_{s} $\end{document} then the solutions converge to a unique equilibrium distribution strongly where if the initial mass is above \begin{document}$ \rho_{s} $\end{document} then the solutions converge to cricital equilibrium distribution in a weak sense. For type II kernels, we do not make any assumption of detailed balance and equilibrium is shown as a consequence of contraction properties of solutions. We provide two separate results depending on the monotonicity of the kernel or smallness of the total mass. For the first case we prove exponential convergence in the number of clusters norm and for the second we prove exponential convergence in the total mass norm.

Attainability property for a probabilistic target in wasserstein spaces
Giulia Cavagnari and Antonio Marigonda
2021, 41(2): 777-812 doi: 10.3934/dcds.2020300 +[Abstract](420) +[HTML](209) +[PDF](749.28KB)

In this paper we establish an attainability result for the minimum time function of a control problem in the space of probability measures endowed with Wasserstein distance. The dynamics is provided by a suitable controlled continuity equation, where we impose a nonlocal nonholonomic constraint on the driving vector field, which is assumed to be a Borel selection of a given set-valued map. This model can be used to describe at a macroscopic level a so-called multiagent system made of several possible interacting agents.

Asymptotic dynamics of a system of conservation laws from chemotaxis
Neng Zhu, Zhengrong Liu, Fang Wang and Kun Zhao
2021, 41(2): 813-847 doi: 10.3934/dcds.2020301 +[Abstract](467) +[HTML](207) +[PDF](558.97KB)

This paper is devoted to the analytical study of the long-time asymptotic behavior of solutions to the Cauchy problem of a system of conservation laws in one space dimension, which is derived from a repulsive chemotaxis model with singular sensitivity and nonlinear chemical production rate. Assuming the \begin{document}$ H^2 $\end{document}-norm of the initial perturbation around a constant ground state is finite and using energy methods, we show that there exists a unique global-in-time solution to the Cauchy problem, and the constant ground state is globally asymptotically stable. In addition, the explicit decay rates of the solutions to the chemically diffusive and non-diffusive models are identified under different exponent ranges of the nonlinear chemical production function.

Well-posedness of some non-linear stable driven SDEs
Noufel Frikha, Valentin Konakov and Stéphane Menozzi
2021, 41(2): 849-898 doi: 10.3934/dcds.2020302 +[Abstract](537) +[HTML](206) +[PDF](830.14KB)

We prove the well-posedness of some non-linear stochastic differential equations in the sense of McKean-Vlasov driven by non-degenerate symmetric \begin{document}$ \alpha $\end{document}-stable Lévy processes with values in \begin{document}$ {{{\mathbb R}}}^d $\end{document} under some mild Hölder regularity assumptions on the drift and diffusion coefficients with respect to both space and measure variables. The methodology developed here allows to consider unbounded drift terms even in the so-called super-critical case, i.e. when the stability index \begin{document}$ \alpha \in (0,1) $\end{document}. New strong well-posedness results are also derived from the previous analysis.

A generalization of the Babbage functional equation
Marc Homs-Dones
2021, 41(2): 899-919 doi: 10.3934/dcds.2020303 +[Abstract](509) +[HTML](224) +[PDF](528.69KB)

A recent refinement of Kerékjártó's Theorem has shown that in \begin{document}$ \mathbb R $\end{document} and \begin{document}$ \mathbb R^2 $\end{document} all \begin{document}$ \mathcal C^l $\end{document}–solutions of the functional equation \begin{document}$ f^n = \text{Id} $\end{document} are \begin{document}$ \mathcal C^l $\end{document}–linearizable, where \begin{document}$ l\in \{0,1,\dots \infty\} $\end{document}. When \begin{document}$ l\geq 1 $\end{document}, in the real line we prove that the same result holds for solutions of \begin{document}$ f^n = f $\end{document}, while we can only get a local version of it in the plane. Through examples, we show that these results are no longer true when \begin{document}$ l = 0 $\end{document} or when considering the functional equation \begin{document}$ f^n = f^k $\end{document} with \begin{document}$ n>k\geq 2 $\end{document}.

Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions
Yi-Long Luo and Yangjun Ma
2021, 41(2): 921-966 doi: 10.3934/dcds.2020304 +[Abstract](521) +[HTML](215) +[PDF](695.87KB)

In this paper we study the incompressible limit of the compressible inertial Qian-Sheng model for liquid crystal flow. We first derive the uniform energy estimates on the Mach number \begin{document}$ \epsilon $\end{document} for both the compressible system and its differential system with respect to time under uniformly in \begin{document}$ \epsilon $\end{document} small initial data. Then, based on these uniform estimates, we pass to the limit in the compressible system as \begin{document}$ \epsilon \rightarrow 0 $\end{document}, so that we establish the global classical solution of the incompressible system by compactness arguments. We emphasize that, on global in time existence of the incompressible inertial Qian-Sheng model under small size of initial data, the range of our assumptions on the coefficients are significantly enlarged, comparing to the results of De Anna and Zarnescu's work [6]. Moreover, we also obtain the convergence rates associated with \begin{document}$ L^2 $\end{document}-norm with well-prepared initial data.

Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay
Feifei Cheng and Ji Li
2021, 41(2): 967-985 doi: 10.3934/dcds.2020305 +[Abstract](536) +[HTML](218) +[PDF](463.94KB)

In this paper we consider the Degasperis-Procesi equation, which is an approximation to the incompressible Euler equation in shallow water regime. First we provide the existence of solitary wave solutions for the original DP equation and the general theory of geometric singular perturbation. Then we prove the existence of solitary wave solutions for the equation with a special local delay convolution kernel and a special nonlocal delay convolution kernel by using the geometric singular perturbation theory and invariant manifold theory. According to the relationship between solitary wave and homoclinic orbit, the Degasperis-Procesi equation is transformed into the slow-fast system by using the traveling wave transformation. It is proved that the perturbed equation also has a homoclinic orbit, which corresponds to a solitary wave solution of the delayed Degasperis-Procesi equation.

$ N- $Laplacian problems with critical double exponential nonlinearities
Shengbing Deng, Tingxi Hu and Chun-Lei Tang
2021, 41(2): 987-1003 doi: 10.3934/dcds.2020306 +[Abstract](447) +[HTML](195) +[PDF](462.49KB)

In this paper, we prove the existence of a nontrivial solution for the following boundary value problem

\begin{document}$ \left\{ {\begin{array}{*{20}{l}}{ - {\rm{div}}(\omega (x)|\nabla u(x){|^{N - 2}}\nabla u(x)) = f(x,u),\;\;\quad }&{\;\;\;\;\;{\rm{in}}\;B;}\\{u = 0,\;\;\quad }&{\;\;\;\;\;{\rm{on}}\;\partial B,}\end{array}} \right.{\rm{ }}\;\;\;\;\;\;\;\left( 1 \right)$\end{document}

where \begin{document}$ B $\end{document} is the unit ball in \begin{document}$ \mathbb{R}^N $\end{document}, \begin{document}$ N\geq 2 $\end{document}, the radial positive weight \begin{document}$ \omega(x) $\end{document} is of logarithmic type, the function \begin{document}$ f(x,u) $\end{document} is continuous in \begin{document}$ B\times\mathbb{R} $\end{document} and has critical double exponential growth, which behaves like \begin{document}$ \exp\{e^{\alpha |u|^{\frac{N}{N-1}}}\} $\end{document} as \begin{document}$ |u|\to\infty $\end{document} for some \begin{document}$ \alpha>0 $\end{document}.

Recoding Lie algebraic subshifts
Ville Salo and Ilkka Törmä
2021, 41(2): 1005-1021 doi: 10.3934/dcds.2020307 +[Abstract](449) +[HTML](221) +[PDF](427.5KB)

We study internal Lie algebras in the category of subshifts on a fixed group – or Lie algebraic subshifts for short. We show that if the acting group is virtually polycyclic and the underlying vector space has dense homoclinic points, such subshifts can be recoded to have a cellwise Lie bracket. On the other hand there exist Lie algebraic subshifts (on any finitely-generated non-torsion group) with cellwise vector space operations whose bracket cannot be recoded to be cellwise. We also show that one-dimensional full vector shifts with cellwise vector space operations can support infinitely many compatible Lie brackets even up to automorphisms of the underlying vector shift, and we state the classification problem of such brackets.

From attempts to generalize these results to other acting groups, the following questions arise: Does every f.g. group admit a linear cellular automaton of infinite order? Which groups admit abelian group shifts whose homoclinic group is not generated by finitely many orbits? For the first question, we show that the Grigorchuk group admits such a CA, and for the second we show that the lamplighter group admits such group shifts.

2019  Impact Factor: 1.338




Email Alert

[Back to Top]