ISSN:

1531-3492

eISSN:

1553-524X

All Issues

## Discrete & Continuous Dynamical Systems - B

August 2021 , Volume 26 , Issue 8

Select all articles

Export/Reference:

*+*[Abstract](1041)

*+*[HTML](339)

*+*[PDF](981.3KB)

**Abstract:**

In this paper, the complex dynamics of a quasi-periodic plasma perturbations (QPP) model, which governs the interplay between a driver associated with pressure gradient and relaxation of instability due to magnetic field perturbations in Tokamaks, are studied. The model consists of three coupled ordinary differential equations (ODEs) and contains three parameters. This paper consists of three parts: (1) We study the stability and bifurcations of the QPP model, which gives the theoretical interpretation of various types of oscillations observed in [Phys. Plasmas, 18(2011):1-7]. In particular, assuming that there exists a finite time lag

*+*[Abstract](744)

*+*[HTML](282)

*+*[PDF](361.7KB)

**Abstract:**

This paper is concerned with an SIS epidemic reaction-diffusion model with mass-action incidence incorporating spontaneous infection in a spatially heterogeneous environment. The main goal of this article is to study the influence of spontaneous infection on the endemic equilibrium (EE) of the model. To achieve this, first the existence of EE is investigated. Furthermore, we discuss the asymptotic behavior of endemic equilibrium if the migration rate of the susceptible or infected population is sufficiently small. Compared to the case without spontaneous infection, our theoretical results show that spontaneous infection can enhance persistence of infectious disease.

*+*[Abstract](861)

*+*[HTML](277)

*+*[PDF](1440.35KB)

**Abstract:**

Most of the previous work on rumor propagation either focus on ordinary differential equations with temporal dimension or partial differential equations (PDE) with only consideration of spatially independent parameters. Little attention has been given to rumor propagation models in a spatiotemporally heterogeneous environment. This paper is dedicated to investigating a SCIR reaction-diffusion rumor propagation model with a general nonlinear incidence rate in both heterogeneous and homogeneous environments. In spatially heterogeneous case, the well-posedness of global solutions is established first. The basic reproduction number

*+*[Abstract](749)

*+*[HTML](302)

*+*[PDF](415.68KB)

**Abstract:**

We construct global generalized solutions to the chemotaxis system

in smooth, bounded domains

Here, inter alia, the selections

While the former case appears to be novel in general, in the two- and three-dimensional setting, the latter improves on a recent result by Winkler (Adv. Nonlinear Anal. **9** (2019), no. 1,526–566), where the condition *any*

*+*[Abstract](889)

*+*[HTML](285)

*+*[PDF](205.08KB)

**Abstract:**

This paper concerns a time-domain scattering problem of elastic plane wave by a rigid obstacle, which is immersed in an open space filled with homogeneous and isotropic elastic medium in two dimensions. A new compressed coordinate transformation is developed to reduce the scattering problem into an initial boundary value problem in a bounded domain over a finite time interval. The well-posednesss is established for the reduced problem. This paper adopts Galerkin method to prove the uniqueness results and employs energy method to derive stability results for the scattering problem. Furthermore, we achieve a priori estimate with explicit time dependence.

*+*[Abstract](726)

*+*[HTML](294)

*+*[PDF](311.28KB)

**Abstract:**

The weak Galerkin (WG) finite element method is an effective and flexible general numerical technique for solving partial differential equations. It is a natural extension of the classic conforming finite element method for discontinuous approximations, which maintains simple finite element formulation. Stabilizer free weak Galerkin methods further simplify the WG methods and reduce computational complexity. This paper explores the possibility of optimal combination of polynomial spaces that minimize the number of unknowns in the stabilizer free WG schemes without compromising the accuracy of the numerical approximation. A new stabilizer free weak Galerkin finite element method is proposed and analyzed with polynomial degree reduction. To achieve such a goal, a new definition of weak gradient is introduced. Error estimates of optimal order are established for the corresponding WG approximations in both a discrete

*+*[Abstract](876)

*+*[HTML](320)

*+*[PDF](2534.34KB)

**Abstract:**

In this paper, we consider an optimal control model governed by a class of delay differential equation, which describe the spread of avian influenza virus from the poultry to human. We take three control variables into the optimal control model, namely: slaughtering to the susceptible and infected poultry (

*+*[Abstract](714)

*+*[HTML](322)

*+*[PDF](3649.31KB)

**Abstract:**

Some industrial behaviors, such as wasting outputs and inadequately treated and stored hazardous materials, may pollute our environment, so some populations in the polluted habitats are at the edge of extinction. In this work, we develop a mathematical model that validates the dynamics of the food-chain population in a polluted environment with impulsive toxicant input. Based on the model, we obtain a sufficient condition for the extinction of populations. When the concentration of toxicants surpasses the threshold, it will contribute to the extinction of populations in the related environment. Also, sufficient conditions for the permanence of populations are obtained in our analysis. Several numerical simulations validate the theoretical conclusions and further reflect the influence of toxicants.

*+*[Abstract](694)

*+*[HTML](287)

*+*[PDF](3063.9KB)

**Abstract:**

The spread of infectious diseases is often accompanied by a rise in the awareness programs to educate the general public about the infection risk and suggest necessary preventive practices. In the present paper we propose to study the impact of awareness on the dynamics of the classical

*+*[Abstract](695)

*+*[HTML](264)

*+*[PDF](460.82KB)

**Abstract:**

We present a first-order aggregation model on the space of complex matrices which can be derived from the Lohe tensor model on the space of tensors with the same rank and size. We call such matrix-valued aggregation model as "*the generalized Lohe matrix model*". For the proposed matrix model with two cubic coupling terms, we study several structural properties such as the conservation laws, solution splitting property. In particular, for the case of only one coupling, we reformulate the reduced Lohe matrix model into the Lohe matrix model with a diagonal frustration, and provide several sufficient frameworks leading to the complete and practical aggregations. For the estimates of collective dynamics, we use a nonlinear functional approach using an ensemble diameter which measures the degree of aggregation.

*+*[Abstract](918)

*+*[HTML](312)

*+*[PDF](591.63KB)

**Abstract:**

The main goal of this paper is to present the existence of a vector field tangent to the unit sphere

*+*[Abstract](593)

*+*[HTML](257)

*+*[PDF](344.04KB)

**Abstract:**

This paper deals with nonnegative solutions of a fully parabolic two-species chemotaxis system with competitive kinetics under homogeneous Neumann boundary conditions in a N-dimensional bounded smooth domain with reasonably smooth nonnegative initial data. In a previous paper of Bai & Winkler (2016), the equilibrium of the global bounded classical solution was shown in both coexistence and extinction cases. We extend this result to weak solutions and prove these solutions globally exist and finally converge to the same semi-trivial steady state in a certain sense.

*+*[Abstract](795)

*+*[HTML](305)

*+*[PDF](484.63KB)

**Abstract:**

In this paper, we study two stochastic problems for time-fractional Rayleigh-Stokes equation including the initial value problem and the terminal value problem. Here, two problems are perturbed by Wiener process, the fractional derivative are taken in the sense of Riemann-Liouville, the source function and the time-spatial noise are nonlinear and satisfy the globally Lipschitz conditions. We attempt to give some existence results and regularity properties for the mild solution of each problem.

*+*[Abstract](736)

*+*[HTML](239)

*+*[PDF](505.29KB)

**Abstract:**

This paper is concerned with the asymptotic behavior of the solutions to a class of non-autonomous nonlocal fractional stochastic parabolic equations with delay defined on bounded domain. We first prove the existence of a continuous non-autonomous random dynamical system for the equations as well as the uniform estimates of solutions with respect to the delay time and noise intensity. We then show pullback asymptotical compactness of solutions as well as the existence and uniqueness of tempered random attractors by utilizing the Arzela-Ascoli theorem and the uniform estimates of solutions in fractional Sobolev space

*+*[Abstract](634)

*+*[HTML](721)

*+*[PDF](333.83KB)

**Abstract:**

In this paper, we construct a stochastic SEIS epidemic model that incorporates constant recruitment, non-degenerate diffusion and infectious force in the latent period and infected period. By solving the corresponding Fokker-Planck equation, we obtain the exact expression of the density function around the endemic equilibrium of the deterministic system provided that the basic reproduction number is greater than one. Our work greatly improves the result of Chen [A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 2020, 106200].

*+*[Abstract](642)

*+*[HTML](274)

*+*[PDF](474.0KB)

**Abstract:**

The nonlinear Schrödinger (NLS) equation is used to describe the envelopes of slowly modulated spatially and temporally oscillating wave packet-like solutions, which can be derived as a formal approximation equation of the quantum Euler-Poisson equation. In this paper, we rigorously justify such an approximation by taking a modified energy functional and a space-time resonance method to overcome the difficulties induced by the quadratic terms, resonance and quasilinearity.

*+*[Abstract](816)

*+*[HTML](268)

*+*[PDF](2441.08KB)

**Abstract:**

A planar ODE system which models the industrialization of a small open economy is considered. Because fractional powers are involved, its interior equilibria are hardly found by solving a transcendental equation and the routine qualitative analysis is not applicable. We qualitatively discuss the transcendental equation, eliminating the transcendental term to polynomialize the expression of extreme value, so that we can compute polynomials to obtain the number of interior equilibria in all cases and complete their qualitative analysis. Orbits near the origin, at which the system cannot be extended differentiably, are investigated by using the GNS method. Then we display all bifurcations of equilibria such as saddle-node bifurcation, transcritical bifurcation and a codimension 2 bifurcation on a one-dimensional center manifold. Furthermore, we prove nonexistence of closed orbits, homoclinic loops and heteroclinic loops, exhibit global orbital structure of the system and analyze the tendency of the industrialization development.

*+*[Abstract](691)

*+*[HTML](260)

*+*[PDF](483.92KB)

**Abstract:**

In this paper, we consider the weakly damped wave equations with hereditary effects and the nonlinearity

*+*[Abstract](748)

*+*[HTML](255)

*+*[PDF](591.06KB)

**Abstract:**

In this paper, we are mainly concerned with the effect of nonlocal diffusion and dispersal spread on bifurcations of a general activator-inhibitor system in which the activator has a nonlocal dispersal. We find that spatially inhomogeneous patterns always exist if the dispersal rate of the activator is sufficiently small, while a larger dispersal spread and an increase of the activator diffusion inhibit the formation of spatial patterns. Compared with the "spatial averaging" nonlocal dispersal model, our model admits a larger parameter region supporting pattern formations, which is also true if compared with the local reaction-diffusion one when the dispersal spread is small. We also study the existence of nonconstant positive steady states through bifurcation theory and find that there could exist finite or infinite steady state bifurcation points of the inhibitor diffusion constant. As an example of our results, we study a water-biomass model with nonlocal dispersal of plants and show that the water and plant distributions could be inphase and antiphase.

*+*[Abstract](651)

*+*[HTML](275)

*+*[PDF](380.96KB)

**Abstract:**

Recent work has produced examples where models of the spread of infectious disease with immigration of infected hosts are shown to be globally asymptotically stable through the use of Lyapunov functions. In each case, the Lyapunov function was similar to a Lyapunov function that worked for the corresponding model without immigration of infected hosts.

We distill the calculations from the individual examples into a general result, finding algebraic conditions under which the Lyapunov function for a model without immigration of infected hosts extends to be a valid Lyapunov function for the corresponding system with immigration of infected hosts.

Finally, the method is applied to a multi-group

*+*[Abstract](642)

*+*[HTML](260)

*+*[PDF](412.19KB)

**Abstract:**

This paper concerns the nonlinear Schrödinger equation which describes the dipolar quantum gases. When the energy plus mass is lower than the mass of the ground state, we find we can use the kinetic energy and mass of the initial data to divide the subspace into two parts. If the initial data are in one of the parts, the solutions exist globally. Moreover, by using the Kening-Merle roadmap method, we find that these solutions will scatter. If initial data are in the other part, the solutions will collapse. And hence, the standing waves are strong unstable.

*+*[Abstract](752)

*+*[HTML](244)

*+*[PDF](328.77KB)

**Abstract:**

The problem of guaranteed cost control is investigated for a class of discrete-time saturated switched systems. The purpose is to design the switched law and state feedback control law such that the closed-loop system is asymptotically stable and the upper-bound of the cost function is minimized. Based on the multiple Lyapunov functions approach, some sufficient conditions for the existence of guaranteed cost controllers are obtained. Furthermore, a convex optimization problem with linear matrix inequalities (LMI) constraints is formulated to determine the minimum upper-bound of the cost function. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.

*+*[Abstract](653)

*+*[HTML](264)

*+*[PDF](3883.95KB)

**Abstract:**

In this paper, we consider a mathematical model of a tumor-immune system interaction when a periodic immunotherapy treatment is applied. We give sufficient conditions, using averaging theory, for the existence and stability of periodic solutions in such system as a function of the six parameters associated to this problem. Finally, we provide examples where our results are applied.

*+*[Abstract](923)

*+*[HTML](310)

*+*[PDF](10563.79KB)

**Abstract:**

It is well-known that fractional-order discrete-time systems have a major advantage over their integer-order counterparts, because they can better describe the memory characteristics and the historical dependence of the underlying physical phenomenon. This paper presents a novel fractional-order triopoly game with bounded rationality, where three firms producing differentiated products compete over a common market. The proposed game theory model consists of three fractional-order difference equations and is characterized by eight equilibria, including the Nash fixed point. When suitable values for the fractional order are considered, the stability of the Nash equilibrium is lost via a Neimark-Sacker bifurcation or via a flip bifurcation. As a consequence, a number of chaotic attractors appear in the system dynamics, indicating that the behaviour of the economic model becomes unpredictable, independently of the actions of the considered firm. The presence of chaos is confirmed via both the computation of the maximum Lyapunov exponent and the 0-1 test. Finally, an entropy algorithm is used to measure the complexity of the proposed game theory model.

*+*[Abstract](1155)

*+*[HTML](328)

*+*[PDF](328.4KB)

**Abstract:**

We consider a chemotaxis-Navier-Stokes system in two dimensional bounded domains. It is asserted that the chemotaxis system admits a time periodic solution under some conditions.

*+*[Abstract](729)

*+*[HTML](239)

*+*[PDF](429.28KB)

**Abstract:**

Building on results obtained in [*Local Stable and Unstable Manifold Theorems* for nonlinear, singular stochastic delay differential equations. The main tools are rough paths theory and a semi-invertible Multiplicative Ergodic Theorem for cocycles acting on measurable fields of Banach spaces obtained in [

2020
Impact Factor: 1.327

5 Year Impact Factor: 1.492

2020 CiteScore: 2.2

## Readers

## Authors

## Editors

## Referees

## Librarians

## Special Issues

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]