
ISSN:
1534-0392
eISSN:
1553-5258
All Issues
Communications on Pure and Applied Analysis
January 2017 , Volume 16 , Issue 1
Select all articles
Export/Reference:
In this paper, we obtain the global weak solution to the 3D spherically symmetric compressible isentropic Navier-Stokes equations with arbitrarily large, vacuum data and free boundary when the shear viscosity $\mu$ is a positive constant and the bulk viscosity $\lambda(\rho)=\rho^\beta$ with $\beta>0$. The analysis of the upper and lower bound of the density is based on some well-chosen functionals. In addition, the free boundary can be shown to expand outward at an algebraic rate in time.
This paper is concerned with the derivative nonlinear Schrödinger equation with quasi-periodic forcing under periodic boundary conditions
Assume that the frequency vector $\beta$ is co-linear with a fixed Diophantine vector $\bar{\beta}\in \mathbb{R}.{m}$, that is, $\beta=\lambda \bar{\beta}$, $\lambda \in [1/2, 3/2]$. We show that above equation possesses a Cantorian branch of invariant $n$--tori and exists many smooth quasi-periodic solutions with $(m+n)$ non-resonance frequencies $(\lambda\bar{\beta}, \omega_{\ast})$. The proof is based on a Kolmogorov--Arnold--Moser (KAM) iterative procedure for quasi-periodically unbounded vector fields and partial Birkhoff normal form.
We investigate a general parabolic initial-boundary value problem with zero Cauchy data in some anisotropic Hörmander inner product spaces. We prove that the operators corresponding to this problem are isomorphisms between appropriate Hörmander spaces. As an application of this result, we establish a theorem on the local increase in regularity of solutions to the problem. We also obtain new sufficient conditions under which the generalized derivatives, of a given order, of the solutions should be continuous.
In this article we are interested in the following fractional $p$-Laplacian equation in $\mathbb{R}^n$
where $p\geq 2$, $0 < s < 1$, $n\geq 2$ and $f$ is $p$-superlinear. By using mountain pass theorem with Cerami condition we prove the existence of nontrivial solution. Furthermore, we show that this solution is radially simmetry.
In this paper, we establish the existence of nontrivial ground-state solutions for a coupled nonlinear Schrödinger system
where $n=1, 2, 3, m\geq 2$ and $b_{ij}$ are positive constants satisfying $b_{ij}=b_{ji}.$ By nontrivial we mean a solution that has all components non-zero. Due to possible systems collapsing it is important to classify ground state solutions. For $m=3$, we get a complete picture that describes whether nontrivial ground-state solutions exist or not for all possible cases according to some algebraic conditions of the matrix $B = (b_{ij})$. In particular, there is a nontrivial ground-state solution provided that all coupling constants $b_{ij}, i\neq j$ are sufficiently large as opposed to cases in which any ground-state solution has at least a zero component when $b_{ij}, i\neq j$ are all sufficiently small. Moreover, we prove that any ground-state solution is synchronized when matrix $B=(b_{ij})$ is positive semi-definite.
This paper is concerned with the asymptotic behavior and uniqueness of traveling wave fronts connecting two half-positive equilibria in a delayed nonlocal dispersal competitive system. We first prove the existence results by applying abstract theories. And then, we show that the traveling wave fronts decay exponentially at both infinities. At last, the strict monotonicity and uniqueness of traveling wave fronts are obtained by using the sliding method in the absent of intraspecific competitive delays. Based on the uniqueness, the exact decay rate of the stronger competitor is established under certain conditions.
In this article, a random and a stochastic version of a SIR nonautonomous model previously introduced in [
In this paper we consider the following fractional Laplacian equation
where $ s\in (0, 1)$ is fixed, $\Omega$ is an open bounded set of $\mathbb{R}.N$, $N > 2s$, with smooth boundary, $(-\Delta).s$ is the fractional Laplace operator. By Morse theory we obtain the existence of nontrivial weak solutions when the problem is resonant at both infinity and zero.
We show the continuity of a specific cost functional $J(\phi) =\mathbb{E} \sup_{ t \in [0, T]}(\varphi(\mathcal{L}[t, u_\phi(t), \phi(t)]))$ of the SNSE in 2D on an open bounded nonperiodic domain $\mathcal{O}$ with respect to a special set of feedback controls $\{\phi_n\}_{n \geq 0}$, where $\varphi(x) =\log(1 + x)^{1-\epsilon}$ with $0 < \epsilon < 1$.
In this paper, we study the zero dissipation limit toward rarefaction waves for solutions to a one-dimensional compressible non-Newtonian fluid for general initial data, whose far fields are connected by a rarefaction wave to the corresponding Euler equations with one end state being vacuum. Given a rarefaction wave with one-side vacuum state to the compressible Euler equations, we construct a sequence of solutions to the one-dimensional compressible non-Newtonian fluid which converge to the above rarefaction wave with vacuum as the viscosity coefficient $\epsilon$ tends to zero. Moreover, the uniform convergence rate is obtained, based on one fact that the viscosity constant can control the degeneracies caused by the vacuum in rarefaction waves and another fact that the energy estimates are obtained under some a priori assumption.
In this paper we consider the following perturbed nonlocal problem with exponential nonlinearity
where $s\in (0, 1)$, $N=ps$, $p\geq 2$ and $f\in L.{\infty}(\mathbb{R}^{N})$. First, we generalize a suitable Trudinger-Moser inequality to a fractional functional space. Then, using the Ekeland's variational principle, we prove the existence of a solution of problem (1).
This paper is focused on the study of the large time asymptotic for solutions to the viscous Burgers equation and also to the adhesion model via heat equation. Using generalization of the truncated moment problem to a complex measure space, we construct asymptotic N-wave approximate solution to the heat equation subject to the initial data whose moments exist upto the order $2n+m$ and $i$-th order moment vanishes, for $i=0, 1, 2\dots m-1$. We provide a different proof for a theorem given by Duoandikoetxea and Zuazua [
In this paper, we study the quasineutral limit and asymptotic behaviors for the quantum Navier-Stokes-Possion equation. We apply a formal expansion according to Debye length and derive the neutral incompressible Navier-Stokes equation. To establish this limit mathematically rigorously, we derive uniform (in Debye length) estimates for the remainders, for well-prepared initial data. It is demonstrated that the quantum effect do play important roles in the estimates and the norm introduced depends on the Planck constant $\hbar>0$.
We study the vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. The phenomena of concentration and cavitation to Chaplygin gas equations with a friction term are identified and analyzed as the pressure vanishes. Due to the influence of source term, the Riemann solutions are no longer self-similar. When the pressure vanishes, the Riemann solutions to the inhomogeneous Chaplygin gas equations converge to the Riemann solutions to the pressureless gas dynamics model with a friction term.
Given a high-order elliptic operator on a compact manifold with or without boundary, we perform the decomposition of Palais-Smale sequences for a nonlinear problem as a sum of bubbles. This is a generalization of the celebrated 1984 result of Struwe [
The purpose of this paper is to study the existence of (weak) periodic solutions for nonlocal fractional equations with periodic boundary conditions. These equations have a variational structure and, by applying a critical point result coming out from a classical Pucci-Serrin theorem in addition to a local minimum result for differentiable functionals due to Ricceri, we are able to prove the existence of at least two periodic solutions for the treated problems. As far as we know, all these results are new.
The aim of this paper is to discuss the issue of global existence of weak solutions of the so called ghost effect system which has been derived recently in [C. D. LEVERMORE, W. SUN, K. TRIVISA, SIAM J. Math. Anal. 2012]. We extend the local existence of solutions proved in [C.D. LEVERMORE, W. SUN, K. TRIVISA, Indiana Univ. J., 2011] to a global existence result. The key tool in this paper is a new functional inequality inspired of what proposed in [A. JÜNGEL, D. MATTHES, SIAM J. Math. Anal., 2008]. Such an inequality being adapted in [D. BRESCH, A. VASSEUR, C. YU, 2016] to be useful for compressible Navier-Stokes equations with degenerate viscosities. Our strategy to prove the global existence of solution builds upon the framework developed in [D. BRESCH, V. GIOVANGILI, E. ZATORSKA, J. Math. Pures Appl., 2015] for low Mach number system.
2020
Impact Factor: 1.916
5 Year Impact Factor: 1.510
2020 CiteScore: 1.9
Readers
Authors
Editors
Referees
Librarians
Special Issues
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]