All Issues

Volume 21, 2022

Volume 20, 2021

Volume 19, 2020

Volume 18, 2019

Volume 17, 2018

Volume 16, 2017

Volume 15, 2016

Volume 14, 2015

Volume 13, 2014

Volume 12, 2013

Volume 11, 2012

Volume 10, 2011

Volume 9, 2010

Volume 8, 2009

Volume 7, 2008

Volume 6, 2007

Volume 5, 2006

Volume 4, 2005

Volume 3, 2004

Volume 2, 2003

Volume 1, 2002

Communications on Pure and Applied Analysis

May 2018 , Volume 17 , Issue 3

Select all articles


Random attractors for stochastic parabolic equations with additive noise in weighted spaces
Xiaojun Li, Xiliang Li and Kening Lu
2018, 17(3): 729-749 doi: 10.3934/cpaa.2018038 +[Abstract](6364) +[HTML](506) +[PDF](462.14KB)

In this paper, we establish the existence of random attractors for stochastic parabolic equations driven by additive noise as well as deterministic non-autonomous forcing terms in weighted Lebesgue spaces \begin{document}$ L_{\delta}^r(\mathcal{O})$\end{document}, where \begin{document}$ 1<r<\infty ,\ \delta$\end{document} is the distance from \begin{document}$ x$\end{document} to the boundary. The nonlinearity \begin{document}$ f(x,u)$\end{document} of equation depending on the spatial variable does not have the bound on the derivative in \begin{document}$ u$\end{document}, and then causes critical exponent. In both subcritical and critical cases, we get the well-posedness and dissipativeness of the problem under consideration and, by smoothing property of heat semigroup in weighted space, the asymptotical compactness of random dynamical system corresponding to the original system.

Existence results for linear evolution equations of parabolic type
Tôn Việt Tạ
2018, 17(3): 751-785 doi: 10.3934/cpaa.2018039 +[Abstract](5641) +[HTML](437) +[PDF](504.53KB)

We study a stochastic parabolic evolution equation of the form \begin{document}$ dX+AXdt = F(t)dt+G(t)dW(t)$ \end{document} in Banach spaces. Existence of mild and strict solutions and their space-time regularity are shown in both the deterministic and stochastic cases. Abstract results are applied to a nonlinear stochastic heat equation.

Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction
Zhitao Zhang and Haijun Luo
2018, 17(3): 787-806 doi: 10.3934/cpaa.2018040 +[Abstract](5537) +[HTML](434) +[PDF](480.5KB)

We study symmetry and asymptotic behavior of ground state solutions for the doubly coupled nonlinear Schrödinger elliptic system

where \begin{document}$ N≤3, Ω\subseteq\mathbb{R}^N$\end{document} is a smooth domain. First we establish the symmetry of ground state solutions, that is, when \begin{document}$ Ω$\end{document} is radially symmetric, we show that ground state solution is foliated Schwarz symmetric with respect to the same point. Moreover, ground state solutions must be radially symmetric under the condition that \begin{document}$ Ω$\end{document} is a ball or the whole space \begin{document}$ \mathbb{R}^N$\end{document}. Next we investigate the asymptotic behavior of positive ground state solution as \begin{document}$ κ\to 0^-$\end{document}, which shows that the limiting profile is exactly a minimizer for \begin{document}$ c_0$\end{document} (the minimized energy constrained on Nehari manifold corresponds to the limit systems). Finally for a system with three equations, we prove the existence of ground state solutions whose all components are nonzero.

Symmetry and non-existence of solutions to an integral system
Yingshu Lü
2018, 17(3): 807-821 doi: 10.3934/cpaa.2018041 +[Abstract](4427) +[HTML](287) +[PDF](385.33KB)

In this paper, we consider the nonnegative solutions of the following system of integral form:

Here \begin{document}$ f_i(u)∈ C^1(\mathbf{R^m_+})\bigcap$\end{document}\begin{document}$ C^0(\mathbf{\overline{R^m_+}})(i = 1,2,···,m)$\end{document} are real-valued functions, nonnegative, homogeneous of degree \begin{document}$ β_{i}$\end{document}, where \begin{document}$ 0<β_{i} ≤q \frac{n+α}{n-α}$\end{document}, and monotone nondecreasing with respect to the variables \begin{document}$ u_1, u_2, ···, u_m$\end{document}. We show that the nonnegative solution \begin{document}$ u = (u_1,u_2,···,u_m)$\end{document} is radially symmetric in the critical and subcritical case by method of moving planes in an integral form and \begin{document}$ u$\end{document} must be zero in the subcritical case.

Futhermore, we consider the form of \begin{document}$ f_i(u) = \sum_{r = 1}^{k}f_{ir}(u),$\end{document} where \begin{document}$ f_{ir}(u)$\end{document} are real-valued homogeneous functions of various degrees \begin{document}$ β_{ir}, r = 1,2,···,k$\end{document} and \begin{document}$ 0 <β_{ir} ≤q \frac{n+α}{n-α}$\end{document}. We also show that the radial symmetry property of the nonnegative solution. Due to the homogeneous of degree can be different, the more intricate method is needed to deal with this difficulty.

The approximate solution for Benjamin-Bona-Mahony equation under slowly varying medium
Wenxia Chen, Ping Yang, Weiwei Gao and Lixin Tian
2018, 17(3): 823-848 doi: 10.3934/cpaa.2018042 +[Abstract](3971) +[HTML](366) +[PDF](413.61KB)

In this paper, we investigate the soliton dynamics under slowly varying medium for the BBM equation, that is how the solution of this equation evolve when the time goes. We construct the approximate solution of this equation and prove that the error term due to the approximate solution can be controlled. By using the method of Lyapunov and Weinstein functions, we prove that the approximate solution is stable.

Existence results for the fractional Q-curvature problem on three dimensional CR sphere
Chungen Liu and Yafang Wang
2018, 17(3): 849-885 doi: 10.3934/cpaa.2018043 +[Abstract](4316) +[HTML](329) +[PDF](581.12KB)

In this paper the fractional Q-curvature problem on three dimensional CR sphere is considered. By using the critical points theory at infinity, an existence result is obtained.

Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities
A. Aghajani and S. F. Mottaghi
2018, 17(3): 887-898 doi: 10.3934/cpaa.2018044 +[Abstract](4591) +[HTML](315) +[PDF](403.45KB)

We consider the fourth order problem \begin{document} $Δ^{2}u = λ f(u)$ \end{document} on a general bounded domain \begin{document} $Ω$ \end{document} in \begin{document} $R^{n}$ \end{document} with the Navier boundary condition \begin{document} $u = Δ u = 0$ \end{document} on \begin{document} $\partial Ω$ \end{document}. Here, \begin{document} $λ$ \end{document} is a positive parameter and \begin{document} $ f:[0, a_{f}) \to \Bbb{R}_{+} $ \end{document} \begin{document} $ \left( {0 < {a_f} \le \infty } \right)$ \end{document} is a smooth, increasing, convex nonlinearity such that \begin{document} $ f(0) > 0 $ \end{document} and which blows up at \begin{document} $ {a_f} $ \end{document}. Let

We show that if $u_{m}$ is a sequence of semistable solutions correspond to $λ_{m}$ satisfy the stability inequality

then $\sup_{m} ||u_{m}||_{L^{∞}(Ω)}<a_{f}$ for $n< \frac{4α_{*}(2-τ_{+})+2τ_{+}}{τ_{+}}\max \{1, τ_{+}\}, $ where $α^{*}$ is the largest root of the equation

In particular, if $τ_{-} = τ_{+}: = τ$, then $\sup_{m} ||u_{m}||_{L^{∞}(Ω)}<a_{f}$ for $n≤12$ when $τ≤ 1$, and for $n≤7$ when $τ≤ 1.57863$. These estimates lead to the regularity of the corresponding extremal solution $u^{*}(x) = \lim_{λ\uparrowλ^{*}}u_{λ}(x), $ where $λ^*$ is the extremal parameter of the eigenvalue problem.

Positive powers of the Laplacian: From hypersingular integrals to boundary value problems
Nicola Abatangelo, Sven Jarohs and Alberto Saldaña
2018, 17(3): 899-922 doi: 10.3934/cpaa.2018045 +[Abstract](4800) +[HTML](280) +[PDF](456.46KB)

Any positive power of the Laplacian is related via its Fourier symbol to a hypersingular integral with finite differences. We show how this yields a pointwise evaluation which is more flexible than other notions used so far in the literature for powers larger than 1; in particular, this evaluation can be applied to more general boundary value problems and we exhibit explicit examples. We also provide a natural variational framework and, using an asymptotic analysis, we prove how these hypersingular integrals reduce to polyharmonic operators in some cases. Our presentation aims to be as self-contained as possible and relies on elementary pointwise calculations and known identities for special functions.

Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval
Shou-Fu Tian
2018, 17(3): 923-957 doi: 10.3934/cpaa.2018046 +[Abstract](43813) +[HTML](406) +[PDF](546.2KB)

In this paper, we study the initial-boundary value problems of the coupled modified Korteweg-de Vries equation formulated on the finite interval with Lax pairs involving \begin{document}$3× 3$\end{document} matrices via the Fokas method. We write the solution in terms of the solution of a \begin{document}$3× 3$\end{document} Riemann-Hilbert problem. The relevant jump matrices are explicitly expressed in terms of the three matrix-value spectral functions \begin{document}$s(k)$\end{document}, \begin{document}$S(k)$\end{document}, and \begin{document}$S_{L}(k)$\end{document}, which are determined by the initial values, boundary values at \begin{document}$x = 0$\end{document}, and at \begin{document}$x = L$\end{document}, respectively. Some of the boundary values are known for a well-posed problem, however, the remaining boundary data are unknown. By using the so-called global relation, the unknown boundary values can be expressed in terms of the given initial and boundary data via a Gelfand-Levitan-Marchenko representation.

Stability of traveling waves of models for image processing with non-convex nonlinearity
Tong Li and Jeungeun Park
2018, 17(3): 959-985 doi: 10.3934/cpaa.2018047 +[Abstract](4396) +[HTML](310) +[PDF](514.38KB)

We establish the existence and stability of smooth large-amplitude traveling waves to nonlinear conservation laws modeling image processing with general flux functions. We innovatively construct a weight function in the weighted energy estimates to overcome the difficulties caused by the absence of the convexity of fluxes in our model. Moreover, we prove that if the integral of the initial perturbation decays algebraically or exponentially in space, the solution converges to the traveling waves with rates in time, respectively. Furthermore, we are able to construct another new weight function to deal with the degeneracy of fluxes in establishing the stability.

Non-existence of global solutions to nonlinear wave equations with positive initial energy
Bilgesu A. Bilgin and Varga K. Kalantarov
2018, 17(3): 987-999 doi: 10.3934/cpaa.2018048 +[Abstract](5206) +[HTML](349) +[PDF](401.74KB)

We consider the Cauchy problem for nonlinear abstract wave equations in a Hilbert space. Our main goal is to show that this problem has solutions with arbitrary positive initial energy that blow up in a finite time. The main theorem is proved by employing a result on growth of solutions of abstract nonlinear wave equation and the concavity method. A number of examples of nonlinear wave equations are given. A result on blow up of solutions with arbitrary positive initial energy to the initial boundary value problem for the wave equation under nonlinear boundary conditions is also obtained.

A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity
Elena Bonetti, Pierluigi Colli, Luca Scarpa and Giuseppe Tomassetti
2018, 17(3): 1001-1022 doi: 10.3934/cpaa.2018049 +[Abstract](4298) +[HTML](300) +[PDF](478.4KB)

In this paper we discuss a family of viscous Cahn-Hilliard equations with a non-smooth viscosity term. This system may be viewed as an approximation of a ''forward-backward'' parabolic equation. The resulting problem is highly nonlinear, coupling in the same equation two nonlinearities with the diffusion term. In particular, we prove existence of solutions for the related initial and boundary value problem. Under suitable assumptions, we also state uniqueness and continuous dependence on data.

Spaces admissible for the Sturm-Liouville equation
N. A. Chernyavskaya and L. A. Shuster
2018, 17(3): 1023-1052 doi: 10.3934/cpaa.2018050 +[Abstract](4005) +[HTML](320) +[PDF](557.91KB)

We consider the equation

where \begin{document}$f∈ L_p^{\text{loc}}(\mathbb R),$\end{document} \begin{document}$p∈[1,∞)$\end{document} and \begin{document}$0≤ q∈ L_1^{\text{loc}}(\mathbb R).$\end{document} By a solution of (1) we mean any function \begin{document}$y,$\end{document} absolutely continuous together with its derivative and satisfying (1) almost everywhere in \begin{document}$\mathbb R.$\end{document} Let positive and continuous functions \begin{document}$μ(x)$\end{document} and \begin{document}$θ(x)$\end{document} for \begin{document}$x∈\mathbb R$\end{document} be given. Let us introduce the spaces

In the present paper, we obtain requirements to the functions \begin{document}$μ,θ$\end{document} and \begin{document}$q$\end{document} under which

1) for every function \begin{document}$f∈ L_p(\mathbb R,θ)$\end{document} there exists a unique solution (1) \begin{document}$y∈ L_p(\mathbb R,μ)$\end{document} of (1);

2) there is an absolute constant \begin{document}$c(p)∈(0,∞)$\end{document} such that regardless of the choice of a function \begin{document}$f∈ L_p(\mathbb R,θ)$\end{document} the solution of (1) satisfies the inequality

Symmetry and nonexistence of positive solutions for fractional systems
Pei Ma, Yan Li and Jihui Zhang
2018, 17(3): 1053-1070 doi: 10.3934/cpaa.2018051 +[Abstract](4837) +[HTML](342) +[PDF](431.63KB)

We consider the following fractional Hénonsystem

for \begin{document}$0<α<2$\end{document} and \begin{document}$a, b$\end{document} \begin{document}$≥0$\end{document}, \begin{document}$n≥2$\end{document}. Under rather weaker assumptions, by using a direct method of moving planes, we prove the nonexistence and symmetry of positive solutions in the subcritical case where \begin{document}$1<p<\frac{n+α+a}{n-α}$\end{document} and \begin{document}$1<q<\frac{n+α+b}{n-α}$\end{document}.

Scattering for the two dimensional NLS with (full) exponential nonlinearity
A. Adam Azzam
2018, 17(3): 1071-1101 doi: 10.3934/cpaa.2018052 +[Abstract](4454) +[HTML](308) +[PDF](569.46KB)

We obtain global well-posedness, scattering, and global \begin{document}$L_t^4H_{x}^{1,4}$\end{document} spacetime bounds for energy-space solutions to the energy-subcritical nonlinear Schrödinger equation

in two spatial dimensions. Our approach is perturbative; we view our problem as a perturbation of the mass-critical NLS to employ the techniques of Tao-Visan-Zhang from [25]. This permits us to combine the known spacetime estimates for mass-critical NLS proved by Dodson [12] and the work of [15] and [14] to prove corresponding spacetime estimates which imply scattering.

A nonlocal concave-convex problem with nonlocal mixed boundary data
Boumediene Abdellaoui, Abdelrazek Dieb and Enrico Valdinoci
2018, 17(3): 1103-1120 doi: 10.3934/cpaa.2018053 +[Abstract](4827) +[HTML](340) +[PDF](449.81KB)

The aim of this paper is to study the following problem

with \begin{document}$0<q<1<p$\end{document}, \begin{document}$N>2s$\end{document}, \begin{document}$λ> 0$\end{document}, \begin{document}$Ω \subset \mathbb{R}^{N}$\end{document} is a smooth bounded domain,

\begin{document}$a_{N,s}$\end{document} is a normalizing constant, and \begin{document}$\mathcal{B}_{s}u = uχ_{Σ_{1}}+\mathcal{N}_{s}uχ_{Σ_{2}}.$\end{document} Here, \begin{document}$Σ_{1}$\end{document} and \begin{document}$Σ_{2}$\end{document} are open sets in \begin{document}$\mathbb{R}^{N}\backslash Ω$\end{document} such that \begin{document}$Σ_{1} \cap Σ_{2} = \emptyset$\end{document} and \begin{document}$\overline{Σ}_{1}\cup \overline{Σ}_{2} = \mathbb{R}^{N}\backslash Ω.$\end{document}

In this setting, \begin{document}$\mathcal{N}_{s}u$\end{document} can be seen as a Neumann condition of nonlocal type that is compatible with the probabilistic interpretation of the fractional Laplacian, as introduced in [20], and \begin{document}$\mathcal{B}_{s}u$\end{document} is a mixed Dirichlet-Neumann exterior datum. The main purpose of this work is to prove existence, nonexistence and multiplicity of positive energy solutions to problem (\begin{document}$P_{λ}$\end{document}) for suitable ranges of \begin{document}$λ$\end{document} and \begin{document}$p$\end{document} and to understand the interaction between the concave-convex nonlinearity and the Dirichlet-Neumann data.

Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth
Yanfang Xue and Chunlei Tang
2018, 17(3): 1121-1145 doi: 10.3934/cpaa.2018054 +[Abstract](5552) +[HTML](390) +[PDF](477.73KB)

In this paper, we are concerned with the existence of ground state solutions for the following quasilinear Schrödinger equation:

where $N≥ 3$, $V, \ g$ are asymptotically periodic functions in $x$. By combining variational methods and the concentration-compactness principle, we obtain a ground state solution for equation (1) under a new reformative condition which unify the asymptotic processes of $V, g $ at infinity.

Sign-changing solutions for non-local elliptic equations with asymptotically linear term
Huxiao Luo, Xianhua Tang and Zu Gao
2018, 17(3): 1147-1159 doi: 10.3934/cpaa.2018055 +[Abstract](5048) +[HTML](415) +[PDF](402.11KB)

In this article, we study the existence of sign-changing solutions for a problem driven by a non-local integrodifferential operator with homogeneous Dirichlet boundary condition

where $Ω\subset\mathbb{R}^n(n≥2)$ is a bounded, smooth domain and $f(x, u)$ is asymptotically linear at infinity with respect to $u$. By introducing some new ideas and combining constraint variational method with the quantitative deformation lemma, we prove that there exists a sign-changing solution of problem (1).

Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities
Cristina Brändle and Arturo De Pablo
2018, 17(3): 1161-1178 doi: 10.3934/cpaa.2018056 +[Abstract](4847) +[HTML](455) +[PDF](640.36KB)

We study the short and large time behaviour of solutions of nonlocal heat equations of the form $\partial_tu+\mathcal{L} u = 0$. Here $\mathcal{L}$ is an integral operator given by a symmetric nonnegative kernel of Lévy type, that includes bounded and unbounded transition probability densities. We characterize when a regularizing effect occurs for small times and obtain $L^q$-$L^p$ decay estimates, $1≤ q < p < ∞$ when the time is large. These properties turn out to depend only on the behaviour of the kernel at the origin or at infinity, respectively, without need of any information at the other end. An equivalence between the decay and a restricted Nash inequality is shown. Finally we deal with the decay of nonlinear nonlocal equations of porous medium type $\partial_tu+\mathcal{L}Φ(u) = 0$.

Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay
Wenjie Zuo and Junping Shi
2018, 17(3): 1179-1200 doi: 10.3934/cpaa.2018057 +[Abstract](4957) +[HTML](336) +[PDF](492.02KB)

The existence of traveling wave solutions and wave train solutions of a diffusive ratio-dependent predator-prey system with distributed delay is proved. For the case without distributed delay, we first establish the existence of traveling wave solution by using the upper and lower solutions method. Second, we prove the existence of periodic traveling wave train by using the Hopf bifurcation theorem. For the case with distributed delay, we obtain the existence of traveling wave and traveling wave train solutions when the mean delay is sufficiently small via the geometric singular perturbation theory. Our results provide theoretical basis for biological invasion of predator species.

Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential
Song Peng and Aliang Xia
2018, 17(3): 1201-1217 doi: 10.3934/cpaa.2018058 +[Abstract](4932) +[HTML](433) +[PDF](446.83KB)

In this article, we prove the existence, multiplicity and concentration of non-trivial solutions for the following indefinite fractional elliptic equation with concave-convex nonlinearities:

where $0<α<1$, $N>2α$, $1<q<2<p<2^*_α$ with $ 2^*_α = 2N/(N-2α)$, the potential $V_λ(x) = λ V^+(x)-V^-(x)$ with $V^± = \max\{± V, 0\}$ and the parameter $λ>0$. Our multiplicity results are based on studying the decomposition of the Nehari manifold.

Remarks on minimizers for (p, q)-Laplace equations with two parameters
Vladimir Bobkov and Mieko Tanaka
2018, 17(3): 1219-1253 doi: 10.3934/cpaa.2018059 +[Abstract](4329) +[HTML](459) +[PDF](669.72KB)

We study in detail the existence, nonexistence and behavior of global minimizers, ground states and corresponding energy levels of the \begin{document}$(p, q)$\end{document} -Laplace equation \begin{document}$-Δ_p u -Δ_q u = α |u|^{p-2}u + β |u|^{q-2}u$\end{document} in a bounded domain $Ω \subset \mathbb{R}^N$ under zero Dirichlet boundary condition, where \begin{document}$p > q > 1$\end{document} and \begin{document}$α, β ∈ \mathbb{R}$\end{document} . A curve on the \begin{document}$(α, β)$\end{document} -plane which allocates a set of the existence of ground states and the multiplicity of positive solutions is constructed. Additionally, we show that eigenfunctions of the p-and q-Laplacians under zero Dirichlet boundary condition are linearly independent.

A loop type component in the non-negative solutions set of an indefinite elliptic problem
Humberto Ramos Quoirin and Kenichiro Umezu
2018, 17(3): 1255-1269 doi: 10.3934/cpaa.2018060 +[Abstract](4865) +[HTML](394) +[PDF](417.1KB)

We prove the existence of a loop type component of non-negative solutions for an indefinite elliptic equation with a homogeneous Neumann boundary condition. This result complements our previous results obtained in [12], where the existence of another loop type component was established in a different situation. Our proof combines local and global bifurcation theory, rescaling and regularizing arguments, a priori bounds, and Whyburn's topological method. A further investigation of the loop type component established in [12] is also provided.

Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application
Shao-Yuan Huang
2018, 17(3): 1271-1294 doi: 10.3934/cpaa.2018061 +[Abstract](4948) +[HTML](405) +[PDF](1477.52KB)

In this paper, we discuss exact multiplicity and bifurcation curves of positive solutions of the one-dimensional Minkowski-curvature problem

where $λ >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, \begin{document}$f∈ C[0, ∞)\cap C^{2}(0, ∞), $\end{document} \begin{document}$f(u)>0$\end{document} for \begin{document}$u>0$\end{document} , and \begin{document}$f^{\prime \prime }(u)$\end{document} is not sign-changing on \begin{document}$\left( 0,\infty \right)$\end{document} .We find that if \begin{document}$f^{\prime \prime }(u)≤q 0$\end{document} for \begin{document}$u>0$\end{document} , the shapes of bifurcation curves are monotone increasing for $L>0$, and if \begin{document}$f^{\prime \prime }(u)>0$\end{document} for \begin{document}$u>0$\end{document} and \begin{document}$f(u)$\end{document} satisfies some suitable hypotheses, the shapes of bifurcation curves has three possibilities. Furthermore, we study, in the \begin{document}$(\lambda ,L,{\left\| u \right\|_\infty })$\end{document} -space, the shapes and structures of the bifurcation surfaces. Finally, we give an application for this problem with a nonlinear term \begin{document}$f(u) = u^{p}+u^{q}$\end{document} where \begin{document}$q≥p>0$\end{document} satisfy some conditions.

Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system
Mohan Mallick, R. Shivaji, Byungjae Son and S. Sundar
2018, 17(3): 1295-1304 doi: 10.3934/cpaa.2018062 +[Abstract](5382) +[HTML](339) +[PDF](464.44KB)

In this paper we study the positive solutions to the \begin{document} $n\times n$ \end{document} \begin{document} $p$ \end{document}-Laplacian system:

where \begin{document} $\lambda$ \end{document} is a positive parameter, \begin{document} $p_j>1$ \end{document}, \begin{document} $\alpha_j\in(0,p_j-1)$ \end{document}, \begin{document} $\varphi_{p_j}(w)=|w|^{p_j-2}w$ \end{document}, and \begin{document} $h_j \in C((0,1),(0, \infty))\cap L^1((0,1),(0,\infty))$ \end{document} for \begin{document} $j=1,2,\dots,n$ \end{document}. Here \begin{document} $f_j:[0,\infty)\rightarrow[0,\infty)$ \end{document}, \begin{document} $j=1,2,\dots,n$ \end{document} are nontrivial nondecreasing continuous functions with \begin{document} $f_j(0)=0$ \end{document} and satisfy a combined sublinear condition at infinity. We discuss here a bifurcation result, an existence result for \begin{document} $\lambda>0$ \end{document}, and a multiplicity result for a certain range of \begin{document} $\lambda$ \end{document}. We establish our results through the method of sub-super solutions.

Cyclicity of degenerate graphic $DF_{2a}$ of Dumortier-Roussarie-Rousseau program
Renato Huzak
2018, 17(3): 1305-1316 doi: 10.3934/cpaa.2018063 +[Abstract](4127) +[HTML](326) +[PDF](751.69KB)

In this paper we finish the study of the cyclicity ( i.e. the maximum number of limit cycles) of the degenerate graphic \begin{document} $DF_{2a}$ \end{document} of [6] which is initiated in [5]. More precisely, we prove that the graphic \begin{document} $DF_{2a}$ \end{document} has a finite cyclicity. The goal of the program [6] is to solve the finiteness part of Hilbert's 16th problem for quadratic polynomial systems. We use techniques from geometric singular perturbation theory, including the family blow-up.

2021 Impact Factor: 1.273
5 Year Impact Factor: 1.282
2021 CiteScore: 2.2




Special Issues

Email Alert

[Back to Top]