All Issues

Volume 21, 2022

Volume 20, 2021

Volume 19, 2020

Volume 18, 2019

Volume 17, 2018

Volume 16, 2017

Volume 15, 2016

Volume 14, 2015

Volume 13, 2014

Volume 12, 2013

Volume 11, 2012

Volume 10, 2011

Volume 9, 2010

Volume 8, 2009

Volume 7, 2008

Volume 6, 2007

Volume 5, 2006

Volume 4, 2005

Volume 3, 2004

Volume 2, 2003

Volume 1, 2002

Communications on Pure and Applied Analysis

April 2022 , Volume 21 , Issue 4

Select all articles


Asymptotic analysis for the electric field concentration with geometry of the core-shell structure
Zhiwen Zhao
2022, 21(4): 1109-1137 doi: 10.3934/cpaa.2022012 +[Abstract](442) +[HTML](124) +[PDF](617.15KB)

In the perfect conductivity problem arising from composites, the electric field may become arbitrarily large as \begin{document}$ \varepsilon $\end{document}, the distance between the inclusions and the matrix boundary, tends to zero. In this paper, by making clear the singular role of the blow-up factor \begin{document}$ Q[\varphi] $\end{document} introduced in [27] for some special boundary data of even function type with \begin{document}$ k $\end{document}-order growth, we prove the optimality of the blow-up rate in the presence of \begin{document}$ m $\end{document}-convex inclusions close to touching the matrix boundary in all dimensions. Finally, we give closer analysis in terms of the singular behavior of the concentrated field for eccentric and concentric core-shell geometries with circular and spherical boundaries from the practical application angle.

Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type
Jan-Phillip Bäcker and Matthias Röger
2022, 21(4): 1139-1155 doi: 10.3934/cpaa.2022013 +[Abstract](441) +[HTML](140) +[PDF](440.91KB)

We consider a Gierer-Meinhardt system on a surface coupled with a parabolic PDE in the bulk, the domain confined by this surface. Such a model was recently proposed and analyzed for two-dimensional bulk domains by Gomez, Ward and Wei (SIAM J. Appl. Dyn. Syst. 18, 2019). We prove the well-posedness of the bulk-surface system in arbitrary space dimensions and show that solutions remain uniformly bounded in parabolic Hölder spaces for all times. The cytosolic diffusion is typically much larger than the lateral diffusion on the membrane. This motivates to a corresponding asymptotic reduction, which consists of a nonlocal system on the membrane. We prove the convergence of solutions of the full system towards unique solutions of the reduction.

Concentration of bound states for fractional Schrödinger-Poisson system via penalization methods
Kaimin Teng and Xian Wu
2022, 21(4): 1157-1187 doi: 10.3934/cpaa.2022014 +[Abstract](360) +[HTML](126) +[PDF](560.47KB)

In this paper, we study the following fractional Schrödinger-Poiss-on system

where \begin{document}$ s,t\in(0,1) $\end{document}, \begin{document}$ \varepsilon>0 $\end{document} is a small parameter. Under some local assumptions on \begin{document}$ V(x) $\end{document} and suitable assumptions on the nonlinearity \begin{document}$ g $\end{document}, we construct a family of positive solutions \begin{document}$ u_{\varepsilon}\in H_{\varepsilon} $\end{document} which concentrate around the global minima of \begin{document}$ V(x) $\end{document} as \begin{document}$ \varepsilon\rightarrow0 $\end{document}.

On deterministic solutions for multi-marginal optimal transport with Coulomb cost
Ugo Bindini, Luigi De Pascale and Anna Kausamo
2022, 21(4): 1189-1208 doi: 10.3934/cpaa.2022015 +[Abstract](547) +[HTML](134) +[PDF](504.65KB)

In this paper we study the three-marginal optimal mass transportation problem for the Coulomb cost on the plane \begin{document}$ \mathbb R^2 $\end{document}. The key question is the optimality of the so-called Seidl map, first disproved by Colombo and Stra. We generalize the partial positive result obtained by Colombo and Stra and give a necessary and sufficient condition for the radial Coulomb cost to coincide with a much simpler cost that corresponds to the situation where all three particles are aligned. Moreover, we produce an infinite class of regular counterexamples to the optimality of this family of maps.

On analyticity up to the boundary for critical quasi-geostrophic equation in the half space
Tsukasa Iwabuchi
2022, 21(4): 1209-1224 doi: 10.3934/cpaa.2022016 +[Abstract](266) +[HTML](88) +[PDF](399.01KB)

We study the Cauchy problem for the surface quasi-geostrophic equation with the critical dissipation in the two dimensional half space under the homogeneous Dirichlet boundary condition. We show the global existence, the uniqueness and the analyticity of solutions, and the real analyticity up to the boundary is obtained. We will show a natural ways to estimate the nonlinear term for functions satisfying the Dirichlet boundary condition.

On Asymptotic Properties of Semi-relativistic Hartree Equation with combined Hartree-type nonlinearities
Qingxuan Wang, Binhua Feng, Yuan Li and Qihong Shi
2022, 21(4): 1225-1247 doi: 10.3934/cpaa.2022017 +[Abstract](484) +[HTML](150) +[PDF](512.06KB)

We consider the semi-relativistic Hartree equation with combined Hartree-type nonlinearities given by

where \begin{document}$ 0<\alpha<1 $\end{document} and \begin{document}$ \beta>0 $\end{document}. Firstly we study the existence and stability of the maximal ground state \begin{document}$ \psi_\beta $\end{document} at \begin{document}$ N = N_c $\end{document}, where \begin{document}$ N_c $\end{document} is a threshold value and can be regarded as "Chandrasekhar limiting mass". Secondly, we analyse blow-up behaviours of maximal ground states \begin{document}$ \psi_\beta $\end{document} when \begin{document}$ \beta\rightarrow 0^+ $\end{document}, and the optimal blow-up rate with respect to \begin{document}$ \beta $\end{document} will be calculated.

A non-convex non-smooth bi-level parameter learning for impulse and Gaussian noise mixture removing
Mourad Nachaoui, Lekbir Afraites, Aissam Hadri and Amine Laghrib
2022, 21(4): 1249-1291 doi: 10.3934/cpaa.2022018 +[Abstract](296) +[HTML](140) +[PDF](10874.86KB)

This paper introduce a novel optimization procedure to reduce mixture of Gaussian and impulse noise from images. This technique exploits a non-convex PDE-constrained characterized by a fractional-order operator. The used non-convex term facilitated the impulse component approximation controlled by a spatial parameter \begin{document}$ \gamma $\end{document}. A non-convex and non-smooth bi-level optimization framework with a modified projected gradient algorithm is then proposed in order to learn the parameter \begin{document}$ \gamma $\end{document}. Denoising tests confirm that the non-convex term and learned parameter \begin{document}$ \gamma $\end{document} lead in general to an improved reconstruction when compared to results of convex norm and manual parameter \begin{document}$ \lambda $\end{document} choice.

On spectral gaps of growth-fragmentation semigroups with mass loss or death
Mustapha Mokhtar-Kharroubi
2022, 21(4): 1293-1327 doi: 10.3934/cpaa.2022019 +[Abstract](322) +[HTML](101) +[PDF](561.09KB)

We give a general theory on well-posedness and time asymptotics for growth fragmentation equations in \begin{document}$ L^{1} $\end{document} spaces. We prove first generation of \begin{document}$ C_{0} $\end{document}-semigroups governing them for unbounded total fragmentation rate and fragmentation kernel \begin{document}$ b(.,.) $\end{document} such that \begin{document}$ \int_{0}^{y}xb(x,y)dx = y-\eta (y)y $\end{document} (\begin{document}$ 0\leq \eta (y)\leq 1 $\end{document} expresses the mass loss) and continuous growth rate \begin{document}$ r(.) $\end{document} such that \begin{document}$ \int_{0}^{\infty }\frac{1}{r(\tau )}d\tau = +\infty . $\end{document}This is done in the spaces of finite mass or finite mass and number of agregates. Generation relies on unbounded perturbation theory peculiar to positive semigroups in \begin{document}$ L^{1} $\end{document} spaces. Secondly, we show that the semigroup has a spectral gap and asynchronous exponential growth. The analysis relies on weak compactness tools and Frobenius theory of positive operators. A systematic functional analytic construction is provided.

On the critical Schrödinger-Poisson system with $ p $-Laplacian
Yao Du, Jiabao Su and Cong Wang
2022, 21(4): 1329-1342 doi: 10.3934/cpaa.2022020 +[Abstract](440) +[HTML](108) +[PDF](438.36KB)

In this paper we consider the critical quasilinear Schrödinger-Poisson system

where \begin{document}$ \frac{3}{2}<p<3 $\end{document}, \begin{document}$ \Delta_p u = \hbox{div}(|\nabla u|^{p-2}\nabla u) $\end{document}, \begin{document}$ p<q<p^*: = \frac{3p}{3-p} $\end{document} and \begin{document}$ \mu,\lambda>0 $\end{document}. Based upon the variational approach, the ground state solutions and the nontrivial solutions are obtained depending on the parameters \begin{document}$ q $\end{document}, \begin{document}$ \mu $\end{document} and \begin{document}$ \lambda $\end{document}.

The duality method for mean field games systems
Lucio Boccardo and Luigi Orsina
2022, 21(4): 1343-1360 doi: 10.3934/cpaa.2022021 +[Abstract](975) +[HTML](128) +[PDF](460.81KB)

In this paper we prove, using a duality method, existence of solutions for the nonlinear elliptic mean field games type system

under different assumptions on \begin{document}$ p > 1 $\end{document}, and the function \begin{document}$ f(x) $\end{document} in Lebesgue spaces.

Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth
Ningning Ye, Zengyun Hu and Zhidong Teng
2022, 21(4): 1361-1384 doi: 10.3934/cpaa.2022022 +[Abstract](378) +[HTML](142) +[PDF](729.61KB)

In this paper, the periodic solution and extinction in a periodic chemostat model with delay in microorganism growth are investigated. The positivity and ultimate boundedness of solutions are firstly obtained. Next, the necessary and sufficient conditions on the existence of positive \begin{document}$ \omega $\end{document}-periodic solutions are established by constructing Poincaré map and using the Whyburn Lemma and Leray-Schauder degree theory. Furthermore, according to the implicit function theorem, the uniqueness of the positive periodic solution is obtained when delay \begin{document}$ \tau $\end{document} is small enough. Finally, the necessary and sufficient conditions for the extinction of microorganism species are established.

Schauder type estimates for degenerate Kolmogorov equations with Dini continuous coefficients
Sergio Polidoro, Annalaura Rebucci and Bianca Stroffolini
2022, 21(4): 1385-1416 doi: 10.3934/cpaa.2022023 +[Abstract](662) +[HTML](246) +[PDF](580.25KB)

We study the regularity properties of the second order linear operator in \begin{document}$ {{\mathbb {R}}}^{N+1} $\end{document}:

where \begin{document}$ A = \left( a_{jk} \right)_{j,k = 1, \dots, m}, B = \left( b_{jk} \right)_{j,k = 1, \dots, N} $\end{document} are real valued matrices with constant coefficients, with \begin{document}$ A $\end{document} symmetric and strictly positive. We prove that, if the operator \begin{document}$ {\mathscr{L}} $\end{document} satisfies Hörmander's hypoellipticity condition, and \begin{document}$ f $\end{document} is a Dini continuous function, then the second order derivatives of the solution \begin{document}$ u $\end{document} to the equation \begin{document}$ {\mathscr{L}} u = f $\end{document} are Dini continuous functions as well. We also consider the case of Dini continuous coefficients \begin{document}$ a_{jk} $\end{document}'s. A key step in our proof is a Taylor formula for classical solutions to \begin{document}$ {\mathscr{L}} u = f $\end{document} that we establish under minimal regularity assumptions on \begin{document}$ u $\end{document}.

On the reducibility of analytic quasi-periodic systems with Liouvillean basic frequencies
Dongfeng Zhang and Junxiang Xu
2022, 21(4): 1417-1445 doi: 10.3934/cpaa.2022024 +[Abstract](273) +[HTML](90) +[PDF](558.89KB)

In this paper we consider the linear quasi-periodic system

where \begin{document}$ A $\end{document} is a \begin{document}$ d\times d $\end{document} constant matrix with elliptic type, \begin{document}$ P(t) $\end{document} is analytic quasi-periodic with respect to \begin{document}$ t $\end{document} with basic frequencies \begin{document}$ \omega = (1, \alpha), $\end{document} with \begin{document}$ \alpha $\end{document} being irrational, and \begin{document}$ \epsilon $\end{document} is a small perturbation parameter. If some suitable non-resonant conditions and non-degeneracy conditions hold, and the basic frequencies satisfy that \begin{document}$ 0\leq \beta(\alpha) < r, $\end{document} where \begin{document}$ \beta(\alpha) = \limsup\limits_{n\rightarrow \infty}\frac{\ln q_{n+1}}{q_{n}}, $\end{document} \begin{document}$ q_{n} $\end{document} is the sequence of denominations of the best rational approximations for \begin{document}$ \alpha \in \mathbb{R} \setminus\mathbb{Q}, $\end{document} \begin{document}$ r $\end{document} is the initial radius of analytic domain, it is proved that for most sufficiently small \begin{document}$ \epsilon, $\end{document} this system can be reduced to a constant system \begin{document}$ \dot{x} = A^{*}x, x\in \mathbb{R}^{d}, $\end{document} where \begin{document}$ A^{*} $\end{document} is a constant matrix close to \begin{document}$ A. $\end{document} As some applications, we apply our results to quasi-periodic Schrödinger equations with an external parameter to study the Lyapunov stability of the equilibrium and the existence of quasi-periodic solutions.

On a macrophage and tumor cell chemotaxis system with both paracrine and autocrine loops
Li Xie and Shigui Ruan
2022, 21(4): 1447-1479 doi: 10.3934/cpaa.2022025 +[Abstract](287) +[HTML](175) +[PDF](857.84KB)

In this paper, we consider a homogeneous Neumann initial-boundary value problem (IBVP) for the following two-species and two-stimuli chemotaxis model with both paracrine and autocrine loops:

where \begin{document}$ u(t, x) $\end{document} and \begin{document}$ w(t, x) $\end{document} denote the density of macrophages and tumor cells at time \begin{document}$ t $\end{document} and location \begin{document}$ x\in \Omega, $\end{document} respectively, \begin{document}$ v(t, x) $\end{document} and \begin{document}$ z(t, x) $\end{document} represent the concentration of colony stimulating factor 1 (CSF-1) secreted by the tumor cells and epidermal growth factor (EGF) secreted by macrophages at time \begin{document}$ t $\end{document} and location \begin{document}$ x\in \Omega, $\end{document} respectively. \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} is a bounded region with smooth boundary, \begin{document}$ \tau_i\ge 0 \; (i = 1, 2) $\end{document}, \begin{document}$ D_i(s)\ge d_i(s+1)^{m_i-1} $\end{document} with parameters \begin{document}$ m_i\ge 1 \; (i = 1, 2) $\end{document} and \begin{document}$ S_j(s)\lesssim (s+1)^{q_j} $\end{document} with parameters \begin{document}$ q_j>0 \;(j = 1, 2, 3) $\end{document}. For the case without autocrine loop (i.e., \begin{document}$ S_3(w) = 0 $\end{document}), it is shown that when \begin{document}$ q_j\le 1 \; (j = 1, 2) $\end{document}, if one of \begin{document}$ q_j $\end{document} is smaller than one or one of \begin{document}$ m_i $\end{document} is larger than one, then the IBVP has a global classical solution which is uniformly bounded. Moreover, when \begin{document}$ m_1 = m_2 = q_1 = q_2 = 1 $\end{document}, an inequality involving the product \begin{document}$ d_1d_2 $\end{document} and the product of the two species' initial mass is obtained which guarantees the existence of global bounded classical solutions. More specifically, it allows one of \begin{document}$ d_i $\end{document} to be small or one of the species initial mass to be large. For the case with autocrine loop (i.e \begin{document}$ S_3(w)\ne 0 $\end{document}), similar results hold only if \begin{document}$ q_3<1 $\end{document}. If \begin{document}$ q_3 = 1 $\end{document}, solutions to the IBVP exist globally only when \begin{document}$ d_2 $\end{document} is suitably large or the mass of species \begin{document}$ w $\end{document} is suitably small.

Concentration behavior of ground states for $ L^2 $-critical Schrödinger Equation with a spatially decaying nonlinearity
Yong Luo and Shu Zhang
2022, 21(4): 1481-1504 doi: 10.3934/cpaa.2022026 +[Abstract](305) +[HTML](70) +[PDF](507.46KB)

We consider ground states of the following time-independent nonlinear \begin{document}$ L^2 $\end{document}-critical Schrödinger equation

where \begin{document}$ \mu\!\in\! {\mathbb{R}} $\end{document}, \begin{document}$ a\!>\!0 $\end{document}, \begin{document}$ N\!\geq\! 1 $\end{document}, \begin{document}$ 0\!<\!b\!<\!\min\{2,N\} $\end{document}, and \begin{document}$ V(x)\!\geq\! 0 $\end{document} is an external potential. We get ground states of the above equation by solving the associated constrained minimization problem. In this paper, we prove that there is a threshold \begin{document}$ a^*\!>\!0 $\end{document} such that minimizer exists for \begin{document}$ 0\!<\!a\!<\!a^* $\end{document}, and minimizer does not exist for any \begin{document}$ a\!>\!a^* $\end{document}. However if \begin{document}$ a\! = \!a^* $\end{document}, it is showed that whether minimizer exists depends sensitively on the value of \begin{document}$ V(0) $\end{document}. Moreover if \begin{document}$ V(0)\! = \!0 $\end{document}, we prove that minimizers must concentrate at the origin as \begin{document}$ a\nearrow a^* $\end{document} and give a detailed concentration behavior of minimizers as \begin{document}$ a\nearrow a^* $\end{document}, based on which we finally prove that there is a unique minimizer when \begin{document}$ a $\end{document} is close enough to \begin{document}$ a^* $\end{document}.

Least squares estimation for distribution-dependent stochastic differential delay equations
Yanyan Hu, Fubao Xi and Min Zhu
2022, 21(4): 1505-1536 doi: 10.3934/cpaa.2022027 +[Abstract](305) +[HTML](90) +[PDF](552.93KB)

The parametric estimation of drift parameter for distribution - dependent stochastic differential delay equations with a small diffusion is presented. The principle technique of our investigation is to construct an appropriate contrast function and carry out a limiting type of argument to show the consistency and convergence rate of the least squares estimator of the drift parameter via interacting particle systems. In addition, two examples are constructed to demonstrate the effectiveness of our work.

2021 Impact Factor: 1.273
5 Year Impact Factor: 1.282
2021 CiteScore: 2.2




Special Issues

Email Alert

[Back to Top]