All Issues

Volume 8, 2014

Volume 7, 2013

Volume 6, 2012

Volume 5, 2011

Volume 4, 2010

Volume 3, 2009

Volume 2, 2008

Volume 1, 2007

Journal of Modern Dynamics

 2020 , Volume 16

Select all articles


The degree of Bowen factors and injective codings of diffeomorphisms
Jérôme Buzzi
2020, 16: 1-36 doi: 10.3934/jmd.2020001 +[Abstract](1695) +[HTML](404) +[PDF](378.51KB)

We show that symbolic finite-to-one extensions of the type constructed by O. Sarig for surface diffeomorphisms induce Hölder-continuous conjugacies on large sets. We deduce this from their Bowen property. This notion, introduced in a joint work with M. Boyle, generalizes a fact first observed by R. Bowen for Markov partitions. We rely on the notion of degree from finite equivalence theory and magic word isomorphisms.

As an application, we give lower bounds on the number of periodic points first for surface diffeomorphisms (improving a result of Sarig) and for Sinaï billiards maps (building on a result of Baladi and Demers). Finally we characterize surface diffeomorphisms admitting a Hölder-continuous coding of all their aperiodic hyperbolic measures and give a slightly weaker construction preserving local compactness.

Rigidity of a class of smooth singular flows on $ \mathbb{T}^2 $
Changguang Dong and Adam Kanigowski
2020, 16: 37-57 doi: 10.3934/jmd.2020002 +[Abstract](582) +[HTML](332) +[PDF](243.53KB)

We study joining rigidity in the class of von Neumann flows with one singularity. They are given by a smooth vector field \begin{document}$ \mathscr{X} $\end{document} on \begin{document}$ \mathbb{T}^2\setminus \{a\} $\end{document}, where \begin{document}$ \mathscr{X} $\end{document} is not defined at \begin{document}$ a\in \mathbb{T}^2 $\end{document} and \begin{document}$ \mathscr{X} $\end{document} has one critical point which is a center. It follows that the phase space can be decomposed into a (topological disc) \begin{document}$ D_\mathscr{X} $\end{document} and an ergodic component \begin{document}$ E_\mathscr{X} = \mathbb{T}^2\setminus D_\mathscr{X} $\end{document}. Let \begin{document}$ \omega_\mathscr{X} $\end{document} be the 1-form associated to \begin{document}$ \mathscr{X} $\end{document}. We show that if \begin{document}$ |\int_{E_{\mathscr{X}_1}}d\omega_{\mathscr{X}_1}|\neq |\int_{E_{\mathscr{X}_2}}d\omega_{\mathscr{X}_2}| $\end{document}, then the corresponding flows \begin{document}$ (v_t^{\mathscr{X}_1}) $\end{document} and \begin{document}$ (v_t^{\mathscr{X}_2}) $\end{document} are disjoint. It also follows that for every \begin{document}$ \mathscr{X} $\end{document} there is a uniquely associated frequency \begin{document}$ \alpha = \alpha_{\mathscr{X}}\in \mathbb{T} $\end{document}. We show that for a full measure set of \begin{document}$ \alpha\in \mathbb{T} $\end{document} the class of smooth time changes of \begin{document}$ (v_t^\mathscr{X_ \alpha}) $\end{document} is joining rigid, i.e., every two smooth time changes are either cohomologous or disjoint. This gives a natural class of flows for which the answer to [15,Problem 3] is positive.

Realizations of groups of piecewise continuous transformations of the circle
Yves Cornulier
2020, 16: 59-80 doi: 10.3934/jmd.2020003 +[Abstract](545) +[HTML](295) +[PDF](724.42KB)

We study the near action of the group \begin{document}$ \mathrm{PC} $\end{document} of piecewise continuous self-transformations of the circle. Elements of this group are only defined modulo indeterminacy on a finite subset, which raises the question of realizability: a subgroup of \begin{document}$ \mathrm{PC} $\end{document} is said to be realizable if it can be lifted to a group of permutations of the circle.

We prove that every finitely generated abelian subgroup of \begin{document}$ \mathrm{PC} $\end{document} is realizable. We show that this is not true for arbitrary subgroups, by exhibiting a non-realizable finitely generated subgroup of the group of interval exchanges with flips.

The group of (oriented) interval exchanges is obviously realizable (choosing the unique left-continuous representative). We show that it has only two realizations (up to conjugation by a finitely supported permutation): the left and right-continuous ones.

Counting square-tiled surfaces with prescribed real and imaginary foliations and connections to Mirzakhani's asymptotics for simple closed hyperbolic geodesics
Francisco Arana-Herrera
2020, 16: 81-107 doi: 10.3934/jmd.2020004 +[Abstract](437) +[HTML](251) +[PDF](273.63KB)

We show that the number of square-tiled surfaces of genus \begin{document}$ g $\end{document}, with \begin{document}$ n $\end{document} marked points, with one or both of its horizontal and vertical foliations belonging to fixed mapping class group orbits, and having at most \begin{document}$ L $\end{document} squares, is asymptotic to \begin{document}$ L^{6g-6+2n} $\end{document} times a product of constants appearing in Mirzakhani's count of simple closed hyperbolic geodesics. Many of the results in this paper reflect recent discoveries of Delecroix, Goujard, Zograf, and Zorich, but the approach considered here is very different from theirs. We follow conceptual and geometric methods inspired by Mirzakhani's work.

Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces
Joshua P. Bowman and Slade Sanderson
2020, 16: 109-153 doi: 10.3934/jmd.2020005 +[Abstract](484) +[HTML](252) +[PDF](958.64KB)

A homothety surface can be assembled from polygons by identifying their edges in pairs via homotheties, which are compositions of translation and scaling. We consider linear trajectories on a \begin{document}$ 1 $\end{document}-parameter family of genus-\begin{document}$ 2 $\end{document} homothety surfaces. The closure of a trajectory on each of these surfaces always has Hausdorff dimension \begin{document}$ 1 $\end{document}, and contains either a closed loop or a lamination with Cantor cross-section. Trajectories have cutting sequences that are either eventually periodic or eventually Sturmian. Although no two of these surfaces are affinely equivalent, their linear trajectories can be related directly to those on the square torus, and thence to each other, by means of explicit functions. We also briefly examine two related families of surfaces and show that the above behaviors can be mixed; for instance, the closure of a linear trajectory can contain both a closed loop and a lamination.

Equilibrium measures for some partially hyperbolic systems
Vaughn Climenhaga, Yakov Pesin and Agnieszka Zelerowicz
2020, 16: 155-205 doi: 10.3934/jmd.2020006 +[Abstract](335) +[HTML](112) +[PDF](500.43KB)

We study thermodynamic formalism for topologically transitive partially hyperbolic systems in which the center-stable bundle satisfies a bounded expansion property, and show that every potential function satisfying the Bowen property has a unique equilibrium measure. Our method is to use tools from geometric measure theory to construct a suitable family of reference measures on unstable leaves as a dynamical analogue of Hausdorff measure, and then show that the averaged pushforwards of these measures converge to a measure that has the Gibbs property and is the unique equilibrium measure.

Exponential gaps in the length spectrum
Emmanuel Schenck
2020, 16: 207-223 doi: 10.3934/jmd.2020007 +[Abstract](314) +[HTML](105) +[PDF](236.65KB)

We present a separation property for the gaps in the length spectrum of a compact Riemannian manifold with negative curvature. In arbitrary small neighborhoods of the metric for some suitable topology, we show that there are negatively curved metrics with a length spectrum exponentially separated from below. This property was previously known to be false generically.

On the non-monotonicity of entropy for a class of real quadratic rational maps
Khashayar Filom and Kevin M. Pilgrim
2020, 16: 225-254 doi: 10.3934/jmd.2020008 +[Abstract](165) +[HTML](63) +[PDF](956.07KB)

We prove that the entropy function on the moduli space of real quadratic rational maps is not monotonic by exhibiting a continuum of disconnected level sets. This entropy behavior is in stark contrast with the case of polynomial maps, and establishes a conjecture on the failure of monotonicity for bimodal real quadratic rational maps of shape \begin{document}$ (+-+) $\end{document} which was posed in [10] based on experimental evidence.

Shimura–Teichmüller curves in genus 5
David Aulicino and Chaya Norton
2020, 16: 255-288 doi: 10.3934/jmd.2020009 +[Abstract](87) +[HTML](45) +[PDF](329.27KB)

We prove that there are no Shimura–Teichmüller curves generated by genus five translation surfaces, thereby completing the classification of Shimura–Teichmüller curves in general. This was conjectured by Möller in his original work introducing Shimura–Teichmüller curves. Moreover, the property of being a Shimura–Teichmüller curve is equivalent to having completely degenerate Kontsevich–Zorich spectrum.

The main new ingredient comes from the work of Hu and the second named author, which facilitates calculations of higher order terms in the period matrix with respect to plumbing coordinates. A large computer search is implemented to exclude the remaining cases, which must be performed in a very specific way to be computationally feasible.

2019  Impact Factor: 0.465


Email Alert

[Back to Top]