ISSN:
 1930-5311

eISSN:
 1930-532X

All Issues





Journal of Modern Dynamics

 2022 , Volume 18

Select all articles

Export/Reference:

A new dynamical proof of the Shmerkin–Wu theorem
Tim Austin
2022, 18: 1-11 doi: 10.3934/jmd.2022001 +[Abstract](198) +[HTML](71) +[PDF](162.97KB)
Abstract:

Let \begin{document}$ a < b $\end{document} be multiplicatively independent integers, both at least \begin{document}$ 2 $\end{document}. Let \begin{document}$ A,B $\end{document} be closed subsets of \begin{document}$ [0,1] $\end{document} that are forward invariant under multiplication by \begin{document}$ a $\end{document}, \begin{document}$ b $\end{document} respectively, and let \begin{document}$ C : = A\times B $\end{document}. An old conjecture of Furstenberg asserted that any planar line \begin{document}$ L $\end{document} not parallel to either axis must intersect \begin{document}$ C $\end{document} in Hausdorff dimension at most \begin{document}$ \max\{\dim C,1\} - 1 $\end{document}. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.

2020 Impact Factor: 0.848
5 Year Impact Factor: 0.815
2020 CiteScore: 0.9

Librarians

Email Alert

[Back to Top]