All Issues

Volume 15, 2021

Volume 14, 2020

Volume 13, 2019

Volume 12, 2018

Volume 11, 2017

Volume 10, 2016

Volume 9, 2015

Volume 8, 2014

Volume 7, 2013

Volume 6, 2012

Volume 5, 2011

Volume 4, 2010

Volume 3, 2009

Volume 2, 2008

Volume 1, 2007

Advances in Mathematics of Communications

February 2021 , Volume 15 , Issue 1

Select all articles


New bounds on the minimum distance of cyclic codes
San Ling and Buket Özkaya
2021, 15(1): 1-8 doi: 10.3934/amc.2020038 +[Abstract](1143) +[HTML](531) +[PDF](296.47KB)

Two bounds on the minimum distance of cyclic codes are proposed. The first one generalizes the Roos bound by embedding the given cyclic code into a cyclic product code. The second bound also uses a second cyclic code, namely the non-zero-locator code, but is not directly related to cyclic product codes and it generalizes a special case of the Roos bound.

A construction of $ p $-ary linear codes with two or three weights
Hongming Ru, Chunming Tang, Yanfeng Qi and Yuxiao Deng
2021, 15(1): 9-22 doi: 10.3934/amc.2020039 +[Abstract](1008) +[HTML](557) +[PDF](467.08KB)

Applied in consumer electronics, communication, data storage system, secret sharing, authentication codes, association schemes, and strongly regular graphs, linear codes attract much interest. We consider the construction of linear codes with two or three weights. Let \begin{document}$ m_1,\ldots, m_t $\end{document} be \begin{document}$ t $\end{document} positive integers and \begin{document}$ T = \mathbb{F}_{q_1}\times \cdots \times \mathbb{F}_{q_t} $\end{document}, where \begin{document}$ q_i = p^{m_i} $\end{document} for \begin{document}$ 1\leq i\leq t $\end{document} and \begin{document}$ p $\end{document} is an odd prime. A linear code

can be constructed by a defining set \begin{document}$ D $\end{document}, where \begin{document}$ D $\end{document} is a subset of \begin{document}$ T $\end{document} and \begin{document}$ \mathbf{c}(\mathbf{a}) = (\sum_{i = 1}^{t}\mathrm{Tr}_1^{m_i}(a_ix_i))_{ \mathbf{x} = (x_1,\ldots,x_t)\in D} $\end{document}. We construct linear codes with two or three weights from the following three defining sets:

\begin{document}$ D_0 = \{\mathbf{x}\in T\backslash \{\mathbf{0}\}: \sum_{i = 1}^t\mathrm{Tr}_1^{m_i}(x_i^2) = 0\} $\end{document},

\begin{document}$ D_{SQ} = \{\mathbf{x}\in T: \sum_{i = 1}^t\mathrm{Tr}_1^{m_i}(x_i^2)\in SQ\} $\end{document},

\begin{document}$ D_{NSQ} = \{\mathbf{x}\in T: \sum_{i = 1}^t\mathrm{Tr}_1^{m_i}(x_i^2)\in NSQ\} $\end{document},

where \begin{document}$ SQ $\end{document} is the set of all the squares in \begin{document}$ \mathbb{F}_p^* $\end{document} and \begin{document}$ NSQ $\end{document} is the set of all the nonsquares in \begin{document}$ \mathbb{F}_p^* $\end{document}. We also determine the weight distributions of these codes. The punctured codes of codes from the defining set \begin{document}$ D_0 $\end{document} contain optimal codes meeting certain bounds. This paper generalizes results of [22].

Golay complementary sets with large zero odd-periodic correlation zones
Tinghua Hu, Yang Yang and Zhengchun Zhou
2021, 15(1): 23-33 doi: 10.3934/amc.2020040 +[Abstract](1061) +[HTML](573) +[PDF](322.48KB)

Golay complementary sets (GCSs) are widely used in different communication systems, i.e., GCSs could be used in OFDM systems to control peak-to-mean envelope power ratio (PMEPR). In this paper, inspired by the work on GCSs with large zero correlation zone given by Chen et al in 2018, we investigate the relationship between GCSs and zero odd-periodic correlation zone (ZOCZ) sequence sets, and present GCSs with flexible sequence set sizes, sequence lengths, large ZOCZ and low PMEPR. Those proposed sequences could be applied in OFDM system for synchronization.

On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $
Ivan Bailera, Joaquim Borges and Josep Rifà
2021, 15(1): 35-54 doi: 10.3934/amc.2020041 +[Abstract](1022) +[HTML](520) +[PDF](456.31KB)

We introduce the Hadamard full propelinear codes that factorize as direct product of groups such that their associated group is \begin{document}$ C_{2t}\times C_2 $\end{document}. We study the rank, the dimension of the kernel, and the structure of these codes. For several specific parameters we establish some links from circulant Hadamard matrices and the nonexistence of the codes we study. We prove that the dimension of the kernel of these codes is bounded by \begin{document}$ 3 $\end{document} if the code is nonlinear. We also get an equivalence between circulant complex Hadamard matrix and a type of Hadamard full propelinear code, and we find a new example of circulant complex Hadamard matrix of order \begin{document}$ 16 $\end{document}.

A new class of $ p $-ary regular bent functions
Chunming Tang, Maozhi Xu, Yanfeng Qi and Mingshuo Zhou
2021, 15(1): 55-64 doi: 10.3934/amc.2020042 +[Abstract](1024) +[HTML](490) +[PDF](383.99KB)

Bent functions have many important applications in cryptography and coding theory. This paper considers a class of \begin{document}$ p $\end{document}-ary functions with the Dillon exponent of the form

where \begin{document}$ n = 2m $\end{document}, \begin{document}$ q = p^m $\end{document}, \begin{document}$ p $\end{document} is an odd prime, \begin{document}$ a_1,a_2\in \mathbb{F}_{p^n} $\end{document}, and \begin{document}$ b\in \mathbb{F}_p $\end{document}. With the help of Kloosterman sums, we present an explicit characterization of these \begin{document}$ p $\end{document}-ary regular bent functions for the case \begin{document}$ gcd(s-r,\frac{q+1}{2}) = 1 $\end{document} and \begin{document}$ gcd(r,q+1) = 1 $\end{document} or \begin{document}$ 2 $\end{document}. Our results generalize results of Li et al. [IEEE Trans. Inf. Theory 59 (2013) 1818-1831].

The singularity attack to the multivariate signature scheme HIMQ-3
Jintai Ding, Zheng Zhang and Joshua Deaton
2021, 15(1): 65-72 doi: 10.3934/amc.2020043 +[Abstract](1079) +[HTML](508) +[PDF](305.3KB)

We present a cryptanalysis of a signature scheme HIMQ-3 due to Kyung-Ah Shim et al [10], which is a submission to National Institute of Standards and Technology (NIST) standardization process of post-quantum cryptosystems in 2017. We will show that inherent to the signing process is a leakage of information of the private key. Using this information one can forge a signature.

A class of linear codes and their complete weight enumerators
Dandan Wang, Xiwang Cao and Gaojun Luo
2021, 15(1): 73-97 doi: 10.3934/amc.2020044 +[Abstract](951) +[HTML](474) +[PDF](493.62KB)

Let \begin{document}$ {\mathbb F}_q $\end{document} be the finite field with \begin{document}$ q = p^m $\end{document} elements, where \begin{document}$ p $\end{document} is an odd prime and \begin{document}$ m $\end{document} is a positive integer. Let \begin{document}$ \operatorname{Tr}_m $\end{document} denote the trace function from \begin{document}$ {\mathbb F}_q $\end{document} onto \begin{document}$ {\mathbb F}_p $\end{document}, and the defining set \begin{document}$ D\subset {\mathbb F}_q^t $\end{document}, where \begin{document}$ t $\end{document} is a positive integer. In this paper, the set \begin{document}$ D = \{(x_1, x_2, \cdots, x_t)\in {\mathbb F}_q^t:\operatorname{Tr}_m(x_1^2+x_2^2+\cdots+x_t^2) = 0, \operatorname{Tr}_m(x_1+x_2+\cdots+x_t) = 1\} $\end{document}. Define the \begin{document}$ p $\end{document}-ary linear code \begin{document}$ {\mathcal C}_D $\end{document} by


We evaluate the complete weight enumerator of the linear codes \begin{document}$ {\mathcal C}_D $\end{document}, and present its weight distributions. Some examples are given to illustrate the results.

Complete weight enumerators of a class of linear codes over finite fields
Shudi Yang, Xiangli Kong and Xueying Shi
2021, 15(1): 99-112 doi: 10.3934/amc.2020045 +[Abstract](1123) +[HTML](563) +[PDF](408.68KB)

We investigate a class of linear codes by choosing a proper defining set and determine their complete weight enumerators and weight enumerators. These codes have at most three weights and some of them are almost optimal so that they are suitable for applications in secret sharing schemes. This is a supplement of the results raised by Wang et al. (2017) and Kong et al. (2019).

A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions
Pedro Branco
2021, 15(1): 113-130 doi: 10.3934/amc.2020046 +[Abstract](1082) +[HTML](542) +[PDF](495.67KB)

In this work, we propose a post-quantum UC-commitment scheme in the Global Random Oracle Model, where only one non-programmable random oracle is available. The security of our proposal is based on two well-established post-quantum hardness assumptions from coding theory: The Syndrome Decoding and the Goppa Distinguisher. We prove that our proposal is perfectly hiding and computationally binding.

The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes
Fengwei Li, Qin Yue and Xiaoming Sun
2021, 15(1): 131-153 doi: 10.3934/amc.2020049 +[Abstract](1530) +[HTML](496) +[PDF](498.57KB)

Let \begin{document}$ l $\end{document} be a prime with \begin{document}$ l\equiv 3\pmod 4 $\end{document} and \begin{document}$ l\ne 3 $\end{document}, \begin{document}$ N = l^m $\end{document} for \begin{document}$ m $\end{document} a positive integer, \begin{document}$ f = \phi(N)/2 $\end{document} the multiplicative order of a prime \begin{document}$ p $\end{document} modulo \begin{document}$ N $\end{document}, and \begin{document}$ q = p^f $\end{document}, where \begin{document}$ \phi(\cdot) $\end{document} is the Euler-function. Let \begin{document}$ \alpha $\end{document} be a primitive element of a finite field \begin{document}$ \Bbb F_{q} $\end{document}, \begin{document}$ C_0^{(N,q)} = \langle \alpha^N\rangle $\end{document} a cyclic subgroup of the multiplicative group \begin{document}$ \Bbb F_q^* $\end{document}, and \begin{document}$ C_i^{(N,q)} = \alpha^i\langle \alpha^N\rangle $\end{document} the cosets, \begin{document}$ i = 0,\ldots, N-1 $\end{document}. In this paper, we use Gaussian sums to obtain the explicit values of \begin{document}$ \eta_i^{(N, q)} = \sum_{x \in C_i^{(N,q)}}\psi(x) $\end{document}, \begin{document}$ i = 0,1,\cdots, N-1 $\end{document}, where \begin{document}$ \psi $\end{document} is the canonical additive character of \begin{document}$ \Bbb F_{q} $\end{document}. Moreover, we also compute the explicit values of \begin{document}$ \eta_i^{(2N, q)} $\end{document}, \begin{document}$ i = 0,1,\cdots, 2N-1 $\end{document}, if \begin{document}$ q $\end{document} is a power of an odd prime \begin{document}$ p $\end{document}.

As an application, we investigate the weight distribution of a \begin{document}$ p $\end{document}-ary linear code:

where its defining set \begin{document}$ D $\end{document} is given by

and \begin{document}$ \operatorname{Tr}_{q/p} $\end{document} denotes the trace function from \begin{document}$ \Bbb F_{q} $\end{document} to \begin{document}$ \Bbb F_p $\end{document}.

Some properties of the cycle decomposition of WG-NLFSR
Yujuan Li, Huaifu Wang, Peipei Zhou and Guoshuang Zhang
2021, 15(1): 155-165 doi: 10.3934/amc.2020050 +[Abstract](893) +[HTML](458) +[PDF](312.19KB)

In this paper, we give some properties of the cycle decomposition of a nonlinear feedback shift register called WG-NLFSR which was presented by Mandal and Gong recently. First we give the parity of the state transition transformation of WG-NLFSR and then by the relation of the parity of a permutation and its number of cycles given in Theorem 2 in Section 1, we show that the number of cycles in the cycle decomposition of WG-NLFSR is even. Second we study the properties of the cycle decomposition of WG-NLFSR when the coefficients of the characteristic polynomial belong to the proper subfields of the finite field on which the WG-NLFSR is defined. Finally, we give some properties of the cycle decomposition of the filtering WG7-NLFSR.

Repeated-root constacyclic codes of length $ 6lp^s $
Tingting Wu, Li Liu, Lanqiang Li and Shixin Zhu
2021, 15(1): 167-189 doi: 10.3934/amc.2020051 +[Abstract](898) +[HTML](495) +[PDF](460.41KB)

Let \begin{document}$ \mathbb{F}_{q} $\end{document} be a finite field with character \begin{document}$ p $\end{document} and \begin{document}$ p\neq{3},l\neq{3} $\end{document} be different odd primes. In this paper, we study constacyclic codes of length \begin{document}$ 6lp^s $\end{document} over finite field \begin{document}$ \mathbb{F}_{q} $\end{document}. The generator polynomials of all constacyclic codes and their duals are obtained. Moreover, we give the characterization and enumeration of linear complementary dual (LCD) and self-dual constacyclic codes of length \begin{document}$ 6lp^s $\end{document} over \begin{document}$ \mathbb{F}_{q} $\end{document}.

Properties of sets of Subspaces with Constant Intersection Dimension
Lisa Hernandez Lucas
2021, 15(1): 191-206 doi: 10.3934/amc.2020052 +[Abstract](846) +[HTML](455) +[PDF](384.39KB)

A \begin{document}$ (k,k-t) $\end{document}-SCID (set of Subspaces with Constant Intersection Dimension) is a set of \begin{document}$ k $\end{document}-dimensional vector spaces that have pairwise intersections of dimension \begin{document}$ k-t $\end{document}. Let \begin{document}$ \mathcal{C} = \{\pi_1,\ldots,\pi_n\} $\end{document} be a \begin{document}$ (k,k-t) $\end{document}-SCID. Define \begin{document}$ S: = \langle \pi_1, \ldots, \pi_n \rangle $\end{document} and \begin{document}$ I: = \langle \pi_i \cap \pi_j \mid 1 \leq i < j \leq n \rangle $\end{document}. We establish several upper bounds for \begin{document}$ \dim S + \dim I $\end{document} in different situations. We give a spectrum result under certain conditions for \begin{document}$ n $\end{document}, giving examples of \begin{document}$ (k,k-t) $\end{document}-SCIDs reaching a large interval of values for \begin{document}$ \dim S + \dim I $\end{document}.

2019  Impact Factor: 0.734




Email Alert

[Back to Top]