ISSN:

1930-8337

eISSN:

1930-8345

All Issues

## Inverse Problems & Imaging

October 2020 , Volume 14 , Issue 5

Select all articles

Export/Reference:

*+*[Abstract](328)

*+*[HTML](106)

*+*[PDF](2923.7KB)

**Abstract:**

The inverse source problems for nonlinear advection-diffusion-reaction models with image-type measurement data are considered. The use of the sensitivity operators, constructed of the ensemble of adjoint problem solutions, allows transforming the inverse problems stated as the systems of nonlinear PDE to a family of operator equations depending on the given set of functions in the space of measurement results. The tangential cone conditions for the resulting operator equations are studied. Newton-Kantorovich type methods are applied for the solution of the operator equations. The algorithms are numerically evaluated on an inverse source problem of atmospheric chemistry.

*+*[Abstract](200)

*+*[HTML](68)

*+*[PDF](388.78KB)

**Abstract:**

We study the inverse boundary value problems of determining a potential in the Helmholtz type equation for the perturbed biharmonic operator from the knowledge of the partial Cauchy data set. Our geometric setting is that of a domain whose inaccessible portion of the boundary is contained in a hyperplane, and we are given the Cauchy data set on the complement. The uniqueness and logarithmic stability for this problem were established in [

*+*[Abstract](186)

*+*[HTML](71)

*+*[PDF](395.63KB)

**Abstract:**

This paper is concerned with the analysis on a numerical recovery of the magnetic diffusivity in a three dimensional (3D) spherical dynamo equation. We shall transform the ill-posed problem into an output least squares nonlinear minimization by an appropriately selected Tikhonov regularization, whose regularizing effects and mathematical properties are justified. The nonlinear optimization problem is approximated by a fully discrete finite element method and its convergence shall be rigorously established.

*+*[Abstract](167)

*+*[HTML](57)

*+*[PDF](419.78KB)

**Abstract:**

We consider the inverse problem of Hölder-stably determining the time- and space-dependent coefficients of the Schrödinger equation on a simple Riemannian manifold with boundary of dimension

*+*[Abstract](183)

*+*[HTML](78)

*+*[PDF](451.8KB)

**Abstract:**

In this work, we study the stable determination of time-dependent coefficients appearing in the Schrödinger equation from partial Dirichlet-to-Neumann map measured on an arbitrary part of the boundary. Specifically, we establish stability estimates up to the natural gauge for the magnetic potential.

*+*[Abstract](193)

*+*[HTML](79)

*+*[PDF](1904.71KB)

**Abstract:**

X-ray computed tomography has been a useful technology in cancer detection and radiation therapy. However, high radiation dose during CT scans may increase the underlying risk of healthy organs. Usually, sparse-view X-ray projection is an effective method to reduce radiation. In this paper, we propose a constrained nonconvex truncated regularization model for this low-dose CT reconstruction. It preserves sharp edges very well. Although this model is quite complicated to analyze, we establish two useful theoretical results for its minimizers. Motivated by them, an iterative support shrinking algorithm is introduced. To handle more nondifferentiable points of the regularization function except zero point, we use a general proximally linearization technique at them, which is helpful to implement our algorithm. For this algorithm, we prove the convergence of the objective function, and give a lower bound theory of the iterative sequence. Numerical experiments and comparisons demonstrate that our model with the proposed algorithm performs good for low-dose CT reconstruction.

*+*[Abstract](231)

*+*[HTML](74)

*+*[PDF](2876.37KB)

**Abstract:**

Non-local dependency is a very important prior for many image segmentation tasks. Generally, convolutional operations are building blocks that process one local neighborhood at a time which means the convolutional neural networks(CNNs) usually do not explicitly make use of the non-local prior on image segmentation tasks. Though the pooling and dilated convolution techniques can enlarge the receptive field to use some nonlocal information during the feature extracting step, there is no nonlocal priori for feature classification step in the current CNNs' architectures. In this paper, we present a non-local total variation (TV) regularized softmax activation function method for semantic image segmentation tasks. The proposed method can be integrated into the architecture of CNNs. To handle the difficulty of back-propagation for CNNs due to the non-smoothness of nonlocal TV, we develop a primal-dual hybrid gradient method to realize the back-propagation of nonlocal TV in CNNs. Experimental evaluations of the non-local TV regularized softmax layer on a series of image segmentation datasets showcase its good performance. Many CNNs can benefit from our proposed method on image segmentation tasks.

*+*[Abstract](173)

*+*[HTML](64)

*+*[PDF](598.13KB)

**Abstract:**

A version of the convexification numerical method for a Coefficient Inverse Problem for a 1D hyperbolic PDE is presented. The data for this problem are generated by a single measurement event. This method converges globally. The most important element of the construction is the presence of the Carleman Weight Function in a weighted Tikhonov-like functional. This functional is strictly convex on a certain bounded set in a Hilbert space, and the diameter of this set is an arbitrary positive number. The global convergence of the gradient projection method is established. Computational results demonstrate a good performance of the numerical method for noisy data.

*+*[Abstract](237)

*+*[HTML](83)

*+*[PDF](381.45KB)

**Abstract:**

This paper considers the inverse problem of recovering both the unknown, spatially-dependent conductivity

2019 Impact Factor: 1.373

## Readers

## Authors

## Editors

## Referees

## Librarians

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]