
ISSN:
1935-9179
eISSN:
1935-9179
All Issues
Electronic Research Announcements
2012 , Volume 19
Select all articles
Export/Reference:
2012, 19: 1-17
doi: 10.3934/era.2012.19.1
+[Abstract](2813)
+[PDF](262.3KB)
Abstract:
The pentagram map was extensively studied in a series of papers by V. Ovsienko, R. Schwartz and S. Tabachnikov. It was recently interpreted by M. Glick as a sequence of cluster transformations associated with a special quiver. Using compatible Poisson structures in cluster algebras and Poisson geometry of directed networks on surfaces, we generalize Glick's construction to include the pentagram map into a family of geometrically meaningful discrete integrable maps.
The pentagram map was extensively studied in a series of papers by V. Ovsienko, R. Schwartz and S. Tabachnikov. It was recently interpreted by M. Glick as a sequence of cluster transformations associated with a special quiver. Using compatible Poisson structures in cluster algebras and Poisson geometry of directed networks on surfaces, we generalize Glick's construction to include the pentagram map into a family of geometrically meaningful discrete integrable maps.
2012, 19: 18-32
doi: 10.3934/era.2012.19.18
+[Abstract](1639)
+[PDF](192.9KB)
Abstract:
In this paper we introduce a general construction for a correspondence between certain Automorphic representations in classical groups. This construction is based on the method of small representations, which we use to construct examples of CAP representations.
In this paper we introduce a general construction for a correspondence between certain Automorphic representations in classical groups. This construction is based on the method of small representations, which we use to construct examples of CAP representations.
2012, 19: 33-40
doi: 10.3934/era.2012.19.33
+[Abstract](3613)
+[PDF](163.9KB)
Abstract:
The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree $d$ and genus $g$ in the projective space of dimension $d-g$, whose full details will appear in [6]. In particular, we extend the previous results of L. Caporaso up to $d>4(2g-2)$ and we observe that this is sharp. In the range $2(2g-2) < d < \frac{7}{2} (2g-2)$, we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.
The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree $d$ and genus $g$ in the projective space of dimension $d-g$, whose full details will appear in [6]. In particular, we extend the previous results of L. Caporaso up to $d>4(2g-2)$ and we observe that this is sharp. In the range $2(2g-2) < d < \frac{7}{2} (2g-2)$, we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.
2012, 19: 41-48
doi: 10.3934/era.2012.19.41
+[Abstract](2329)
+[PDF](161.5KB)
Abstract:
This note describes a unified approach to several superrigidity results, old and new, concerning representations of lattices into simple algebraic groups over local fields. For an arbitrary group $\Gamma$ and a boundary action $\Gamma$ ↷ $B$ we associate a certain generalized Weyl group $W_{{\Gamma}{B}}$ and show that any representation with a Zariski dense unbounded image in a simple algebraic group, $\rho:\Gamma\to \bf{H}$, defines a special homomorphism $W_{{\Gamma}{B}}\to Weyl_{\bf H}$. This general fact allows the deduction of the aforementioned superrigidity results.
This note describes a unified approach to several superrigidity results, old and new, concerning representations of lattices into simple algebraic groups over local fields. For an arbitrary group $\Gamma$ and a boundary action $\Gamma$ ↷ $B$ we associate a certain generalized Weyl group $W_{{\Gamma}{B}}$ and show that any representation with a Zariski dense unbounded image in a simple algebraic group, $\rho:\Gamma\to \bf{H}$, defines a special homomorphism $W_{{\Gamma}{B}}\to Weyl_{\bf H}$. This general fact allows the deduction of the aforementioned superrigidity results.
2012, 19: 49-57
doi: 10.3934/era.2012.19.49
+[Abstract](1772)
+[PDF](327.5KB)
Abstract:
This paper deals with some semi-spectral representations of logmodular algebras. More exactly, we characterize such representations by the corresponding scalar semi-spectral measures. In the case of a logmodular algebra we obtain, for $0<\rho \leq 1,$ several results which generalize the corresponding results of Foiaş-Suciu [2] in the case $\rho =1.$
This paper deals with some semi-spectral representations of logmodular algebras. More exactly, we characterize such representations by the corresponding scalar semi-spectral measures. In the case of a logmodular algebra we obtain, for $0<\rho \leq 1,$ several results which generalize the corresponding results of Foiaş-Suciu [2] in the case $\rho =1.$
2012, 19: 58-76
doi: 10.3934/era.2012.19.58
+[Abstract](4882)
+[PDF](431.5KB)
Abstract:
In this paper, we describe an integration of exact Courant algebroids to symplectic 2-groupoids, and we show that the differentiation procedure from [32] inverts our integration.
In this paper, we describe an integration of exact Courant algebroids to symplectic 2-groupoids, and we show that the differentiation procedure from [32] inverts our integration.
2012, 19: 77-85
doi: 10.3934/era.2012.19.77
+[Abstract](2731)
+[PDF](126.0KB)
Abstract:
We give explicit isoperimetric upper bounds for all Steklov eigenvalues of a compact orientable surface with boundary, in terms of the genus, the length of the boundary, and the number of boundary components. Our estimates generalize a recent result of Fraser-Schoen, as well as the classical inequalites obtained by Hersch-Payne-Schiffer, whose approach is used in the present paper.
We give explicit isoperimetric upper bounds for all Steklov eigenvalues of a compact orientable surface with boundary, in terms of the genus, the length of the boundary, and the number of boundary components. Our estimates generalize a recent result of Fraser-Schoen, as well as the classical inequalites obtained by Hersch-Payne-Schiffer, whose approach is used in the present paper.
2012, 19: 86-96
doi: 10.3934/era.2012.19.86
+[Abstract](1639)
+[PDF](398.8KB)
Abstract:
We extend the definition of the pentagram map from 2D to higher dimensions and describe its integrability properties for both closed and twisted polygons by presenting its Lax form. The corresponding continuous limit of the pentagram map in dimension $d$ is shown to be the $(2,d+1)$-equation of the KdV hierarchy, generalizing the Boussinesq equation in 2D.
We extend the definition of the pentagram map from 2D to higher dimensions and describe its integrability properties for both closed and twisted polygons by presenting its Lax form. The corresponding continuous limit of the pentagram map in dimension $d$ is shown to be the $(2,d+1)$-equation of the KdV hierarchy, generalizing the Boussinesq equation in 2D.
2012, 19: 97-111
doi: 10.3934/era.2012.19.97
+[Abstract](1648)
+[PDF](1019.1KB)
Abstract:
Following Riley's work, for each $2$-bridge link $K(r)$ of slope $r∈\mathbb{R}$ and an integer or a half-integer $n$ greater than $1$, we introduce the Heckoid orbifold $S(r;n)$and the Heckoid group $G(r;n)=\pi_1(S(r;n))$ of index $n$ for $K(r)$. When $n$ is an integer, $S(r;n)$ is called an even Heckoid orbifold; in this case, the underlying space is the exterior of $K(r)$, and the singular set is the lower tunnel of $K(r)$ with index $n$. The main purpose of this note is to announce answers to the following questions for even Heckoid orbifolds. (1) For an essential simple loop on a $4$-punctured sphere $S$ in $S(r;n)$ determined by the $2$-bridge sphere of $K(r)$, when is it null-homotopic in $S(r;n)$? (2) For two distinct essential simple loops on $S$, when are they homotopic in $S(r;n)$? We also announce applications of these results to character varieties, McShane's identity, and epimorphisms from $2$-bridge link groups onto Heckoid groups.
Following Riley's work, for each $2$-bridge link $K(r)$ of slope $r∈\mathbb{R}$ and an integer or a half-integer $n$ greater than $1$, we introduce the Heckoid orbifold $S(r;n)$and the Heckoid group $G(r;n)=\pi_1(S(r;n))$ of index $n$ for $K(r)$. When $n$ is an integer, $S(r;n)$ is called an even Heckoid orbifold; in this case, the underlying space is the exterior of $K(r)$, and the singular set is the lower tunnel of $K(r)$ with index $n$. The main purpose of this note is to announce answers to the following questions for even Heckoid orbifolds. (1) For an essential simple loop on a $4$-punctured sphere $S$ in $S(r;n)$ determined by the $2$-bridge sphere of $K(r)$, when is it null-homotopic in $S(r;n)$? (2) For two distinct essential simple loops on $S$, when are they homotopic in $S(r;n)$? We also announce applications of these results to character varieties, McShane's identity, and epimorphisms from $2$-bridge link groups onto Heckoid groups.
2012, 19: 112-119
doi: 10.3934/era.2012.19.112
+[Abstract](2147)
+[PDF](286.6KB)
Abstract:
We consider billiard ball motion in a convex domain of a constant curvature surface influenced by the constant magnetic field. We prove that if the billiard map is totally integrable then the boundary curve is necessarily a circle. This result shows that the so-called Hopf rigidity phenomenon which was recently obtained for classical billiards on constant curvature surfaces holds true also in the presence of constant magnetic field.
We consider billiard ball motion in a convex domain of a constant curvature surface influenced by the constant magnetic field. We prove that if the billiard map is totally integrable then the boundary curve is necessarily a circle. This result shows that the so-called Hopf rigidity phenomenon which was recently obtained for classical billiards on constant curvature surfaces holds true also in the presence of constant magnetic field.
2012, 19: 120-130
doi: 10.3934/era.2012.19.120
+[Abstract](2027)
+[PDF](405.2KB)
Abstract:
It is shown that for every $p\in (1,\infty)$ there exists a Banach space $X$ of finite cotype such that the projective tensor product $l_p\hat\otimes X$ fails to have finite cotype. More generally, if $p_1,p_2,p_3\in (1,\infty)$ satisfy $\frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}\le 1$ then $l_{p_1}\hat\otimes l_{p_2} \hat\otimes l_{p_3}$ does not have finite cotype. This is proved via a connection to the theory of locally decodable codes.
It is shown that for every $p\in (1,\infty)$ there exists a Banach space $X$ of finite cotype such that the projective tensor product $l_p\hat\otimes X$ fails to have finite cotype. More generally, if $p_1,p_2,p_3\in (1,\infty)$ satisfy $\frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}\le 1$ then $l_{p_1}\hat\otimes l_{p_2} \hat\otimes l_{p_3}$ does not have finite cotype. This is proved via a connection to the theory of locally decodable codes.
2019 Impact Factor: 0.5
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]