
ISSN:
1935-9179
eISSN:
1935-9179
All Issues
Electronic Research Announcements
2017 , Volume 24
Select all articles
Export/Reference:
We prove a result for maps of surfaces that illustrates how singularhyperbolic flows can be desingularized if a global section can be collapsed to a surface along stable leaves.
It is long known that with respect to the property of having a finitely axiomatizable equational theory, there is no relationship between a general involution semigroup and its semigroup reduct. The present article establishes such a relationship within the class of involution semigroups that are unstable in the sense that the varieties they generate contain semilattices with nontrivial involution. Specifically, it is shown that the equational theory of an unstable involution semigroup is not finitely axiomatizable whenever the equational theory of its semigroup reduct satisfies the same property. Consequently, many results on equational properties of semigroups can be converted into results applicable to involution semigroups.
Using Langer's variation on the Bogomolov-Miyaoka-Yau inequality, we provide some Hirzebruch-type inequalities for curve arrangements in the complex projective plane.
For a symplectic manifold
In this paper, we study the Dirichlet boundary value problem of a class of nonlinear parabolic equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
We provide necessary conditions for the refined version of the Brascamp-Lieb inequality where the input functions are allowed to belong to Lorentz spaces, thereby establishing the sharpness of the range of Lorentz exponents in the subcritical case. Using similar considerations, some sharp refinements of the Strichartz estimates for the kinetic transport equation are established.
Hájek [
We characterize the groupoids for which an operator is Fredholm if and only if its principal symbol and all its boundary restrictions are invertible. A groupoid with this property is called Fredholm. Using results on the Effros-Hahn conjecture, we show that an almost amenable, Hausdorff, second countable groupoid is Fredholm. Many groupoids, and hence many pseudodifferential operators appearing in practice, fit into this framework. In particular, one can use these results to characterize the Fredholm operators on manifolds with cylindrical and poly-cylindrical ends, on manifolds that are asymptotically Euclidean or asymptotically hyperbolic, on products of such manifolds, and on many other non-compact manifolds. Moreover, we show that the desingularization of groupoids preserves the class of Fredholm groupoids.
We introduce a new construction of matrix wreath products of algebras that is similar to the construction of wreath products of groups introduced by L. Kaloujnine and M. Krasner [
The present note overviews our recent construction of real Gromov-Witten theory in arbitrary genera for many real symplectic manifolds, including the odd-dimensional projective spaces and the renowned quintic threefold, its properties, and its connections with real enumerative geometry. Our construction introduces the principle of orienting the determinant of a differential operator relative to a suitable base operator and a real setting analogue of the (relative) spin structure of open Gromov-Witten theory. Orienting the relative determinant, which in the now-standard cases is canonically equivalent to orienting the usual determinant, is naturally related to the topology of vector bundles in the relevant category. This principle and its applications allow us to endow the uncompactified moduli spaces of real maps from symmetric surfaces of all topological types with natural orientations and to verify that they extend across the codimension-one boundaries of these spaces, thus implementing a far-reaching proposal from C.-C. Liu's thesis.
Consider a compact Riemannian manifold with boundary. In this short note we prove that under certain positive curvature assumptions on the manifold and its boundary the Steklov eigenvalues of the manifold are controlled by the Laplace eigenvalues of the boundary. Additionally, in two dimensions we obtain an upper bound for Steklov eigenvalues in terms of topology of the surface without any curvature restrictions.
We investigate in this paper the distribution of the discrepancy of various lattice counting functions. In particular, we prove that the number of lattice points contained in certain domains defined by products of linear forms satisfies a Central Limit Theorem. Furthermore, we show that the Central Limit Theorem holds for the number of rational approximants for weighted Diophantine approximation in $\mathbb{R}^d$. Our arguments exploit chaotic properties of the Cartan flow on the space of lattices.
Since Dumnicki, Szemberg, and Tutaj-Gasińska gave in 2013 in [
2020
Impact Factor: 0.929
5 Year Impact Factor: 0.674
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]