ISSN:

1937-1632

eISSN:

1937-1179

All Issues

## Discrete & Continuous Dynamical Systems - S

November 2020 , Volume 13 , Issue 11

Issue on recent advances in bifurcation theory and application

Select all articles

Export/Reference:

*+*[Abstract](509)

*+*[HTML](91)

*+*[PDF](91.57KB)

**Abstract:**

*+*[Abstract](1173)

*+*[HTML](375)

*+*[PDF](1203.75KB)

**Abstract:**

In this paper, we study the spatiotemporal dynamics of a diffusive predator-prey model with generalist predator subject to homogeneous Neumann boundary condition. Some basic dynamics including the dissipation, persistence and non-persistence(i.e., one species goes extinct), the local and global stability of non-negative constant steady states of the model are investigated. The conditions of Turing instability due to diffusion at positive constant steady states are presented. A critical value

*+*[Abstract](984)

*+*[HTML](315)

*+*[PDF](778.71KB)

**Abstract:**

We model a nutrient-prey-predator system in a chemostat with general functional responses, using the input concentration of nutrient as the bifurcation parameter. We study changes in the existence and the stability of isolated equilibria, as well as changes in the global dynamics, as the nutrient concentration varies. The bifurcations of the system are analytically verified and we identify conditions under which an equilibrium undergoes a Hopf bifurcation and a limit cycle appears. Numerical simulations for specific functional responses illustrate the general results.

*+*[Abstract](1017)

*+*[HTML](373)

*+*[PDF](1069.93KB)

**Abstract:**

We analyze the stability of a differential equation with two delays originating from a model for a population divided into two subpopulations, immature and mature, and we apply this analysis to a model for platelet production. The dynamics of mature individuals is described by the following nonlinear differential equation with two delays:

*+*[Abstract](1036)

*+*[HTML](394)

*+*[PDF](1253.04KB)

**Abstract:**

Integrodifference equations are discrete-time analogues of reaction-diffusion equations and can be used to model the spatial spread and invasion of non-native species. They support solutions in the form of traveling waves, and the speed of these waves gives important insights about the speed of biological invasions. Typically, a traveling wave leaves in its wake a stable state of the system. Dynamical stabilization is the phenomenon that an unstable state arises in the wake of such a wave and appears stable for potentially long periods of time, before it is replaced with a stable state via another transition wave. While dynamical stabilization has been studied in systems of reaction-diffusion equations, we here present the first such study for integrodifference equations. We use linear stability analysis of traveling-wave profiles to determine necessary conditions for the emergence of dynamical stabilization and relate it to the theory of stacked fronts. We find that the phenomenon is the norm rather than the exception when the non-spatial dynamics exhibit a stable two-cycle.

*+*[Abstract](989)

*+*[HTML](356)

*+*[PDF](470.44KB)

**Abstract:**

We study the existence/nonexistence and multiplicity of spacelike graphs for the following mean curvature equation in a standard static spacetime

with

*+*[Abstract](961)

*+*[HTML](344)

*+*[PDF](777.16KB)

**Abstract:**

In this paper, we analyze a nutrient-phytoplankton model with toxic effects governed by a Holling-type Ⅲ functional. We show the model can undergo two saddle-node bifurcations and a Hopf bifurcation. This results in very interesting dynamics: the model can have at most three positive equilibria and can exhibit relaxation oscillations. Our results provide some insights on understanding the occurrence and control of phytoplankton blooms.

*+*[Abstract](1133)

*+*[HTML](438)

*+*[PDF](1161.57KB)

**Abstract:**

For the nonlinear Schrödinger (NLS) equation with fourth-order dispersion and dual power law nonlinearity, by using the method of dynamical systems, we investigate the bifurcations and exact traveling wave solutions. Because obtained traveling wave system is an integrable singular traveling wave system having a singular straight line and the origin in the phase plane is a high-order equilibrium point. We need to use the theory of singular systems to analyze the dynamics and bifurcation behavior of solutions of system. For

*+*[Abstract](1003)

*+*[HTML](360)

*+*[PDF](2915.0KB)

**Abstract:**

In order to study the dissemination mechanism of knowledge, a SIRI dynamics model with the learning rate, the forgetting rate and the recalling rate is constructed in this paper. Stability of equilibria and global dynamics of the SIRI model are analyzed. Two thresholds that determine whether knowledge is disseminated are given. We describe the stability of the equilibria for the SIRI model in which there are an equilibrium and a line of equilibria. In particular, we find the dividing curve function which is used to partition invariant set in order to discuss the local stability, and obtain the equation of the wave peak value or wave trough value in the process of knowledge dissemination. Numerical simulations are provided to support the theoretical results. The complicated dynamics properties exhibit that the model is very sensitive to variation of parameters, which play an important role on controlling and administering the knowledge dissemination.

*+*[Abstract](985)

*+*[HTML](371)

*+*[PDF](329.21KB)

**Abstract:**

In this paper we study the maximal number of limit cycles for a class of piecewise smooth near-Hamiltonian systems under polynomial perturbations. Using the second order averaging method, we obtain the maximal number of limit cycles of two systems respectively. We also present an application.

*+*[Abstract](1063)

*+*[HTML](377)

*+*[PDF](680.26KB)

**Abstract:**

In this paper, we study a SIRS epidemic model with a generalized nonmonotone incidence rate. It is shown that the model undergoes two different topological types of Bogdanov-Takens bifurcations, i.e., repelling and attracting Bogdanov-Takens bifurcations, for general parameter conditions. The approximate expressions for saddle-node, Homoclinic and Hopf bifurcation curves are calculated up to second order. Furthermore, some numerical simulations, including bifurcations diagrams and corresponding phase portraits, are given to illustrate the theoretical results.

*+*[Abstract](956)

*+*[HTML](351)

*+*[PDF](482.35KB)

**Abstract:**

In this paper, we investigate a diffusive logistic equation with non-zero Dirichlet boundary condition and two delays. We first exclude the existence of positive heterogeneous steady states, which implies the uniqueness of constant positive steady state. Then, we analyze the local stability and local Hopf bifurcation at the positive steady state. We show that multiple delays can induce multiple stability switches. Furthermore, we prove global stability of the positive steady state under certain conditions and obtain global Hopf bifurcation results. Our theoretical results are illustrated with numerical simulations.

*+*[Abstract](1131)

*+*[HTML](459)

*+*[PDF](801.99KB)

**Abstract:**

Magal et al. [

*+*[Abstract](1035)

*+*[HTML](373)

*+*[PDF](382.29KB)

**Abstract:**

In this paper, we investigate the modified steady Swift-Hohenberg equation

where

*+*[Abstract](875)

*+*[HTML](314)

*+*[PDF](4911.4KB)

**Abstract:**

There has been an increasing interest in the study of fractional discrete difference since Miller and Ross introduced the

*+*[Abstract](954)

*+*[HTML](371)

*+*[PDF](364.92KB)

**Abstract:**

This paper considers a pollination-mutualism system in which flowering plants have strategies of secreting and cheating: secretors produce a substantial volume of nectar in flowers but cheaters produce none. Accordingly, floral visitors have strategies of neglecting and selecting: neglectors enter any flower encountered but selectors only enter full flowers since they can discriminate between secretors and cheaters. By combination of replicator equations and two-species dynamical systems, the games are described by a mathematical model in this paper. Dynamics of the model demonstrate mechanisms by which nectarless flowers can invade the secretor-pollinator system and by which a cyclic game between nectarless flowers and pollinators could occur. Criteria for the persistence of nectarless flowers are derived in terms of the given parameters (factors), including the nectar-producing cost and cheaters' efficiency. Numerical simulations show that when parameters vary, cheaters would vary among extinction, persistence in periodic oscillations, and persistence without secretors (i.e., cheaters spread widely). We also consider the evolution of plants in a constant state of pollinator population, and the evolution of pollinators in a constant state of plant population. Dynamics of the models demonstrate conditions under which nectarless flowers (resp. selectors) could persist.

*+*[Abstract](984)

*+*[HTML](338)

*+*[PDF](2469.15KB)

**Abstract:**

We study the effect of interest rate on phenomenon of business cycle in a Kaldor-Kalecki model. From the information of the People's Bank of China and the Federal Reserve System, we know the interest rate is not a constant but with remarkable periodic volatility. Therefore, we consider periodically forced interest rate in the model and study its dynamics. It is found that, both limit cycle through Hopf bifurcation in unforced system and periodic solutions generated by period doubling bifurcation or resonance in periodically forced system, can lead to cyclical economic fluctuations. Our analysis reveals that the cyclical fluctuation of interest rate is one of a key formation mechanism of business cycle, which agrees well with the pure monetary theory on business cycle. Moreover, this fluctuation can cause chaos in a business cycle system.

*+*[Abstract](1394)

*+*[HTML](356)

*+*[PDF](350.67KB)

**Abstract:**

In this paper, we consider Bogdanov-Takens bifurcation in two predator-prey systems. It is shown that in the full parameter space, Bogdanov-Talens bifurcation can be codimension

*+*[Abstract](1071)

*+*[HTML](326)

*+*[PDF](319.04KB)

**Abstract:**

In this paper, we consider a diffusive Leslie-Gower predator-prey system with prey subject to Allee effect. First, taking into account the diffusion of both species, we obtain the existence of traveling wave solution connecting predator-free constant steady state and coexistence steady state by using the upper and lower solutions method. However, due to the singularity in the predator equation, we need construct a positive suitable lower solution for the prey density. Such a traveling wave solution can model the spatial-temporal process where the predator invades the territory of the prey and they eventually coexist. Second, taking into account two cases: the diffusion of both species and the diffusion of prey-only, we prove the existence of small amplitude periodic traveling wave train solutions by using the Hopf bifurcation theory. Such traveling wave solutions show that the predator invasion leads to the periodic population densities in the coexistence domain.

2019 Impact Factor: 1.233

## Readers

## Authors

## Editors/Guest Editors

## Referees

## Librarians

## Call for special issues

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]