
ISSN:
1937-5093
eISSN:
1937-5077
All Issues
Kinetic and Related Models
December 2017 , Volume 10 , Issue 4
Select all articles
Export/Reference:
The mixed three-moment hydrodynamic description of fermionic radiation transport based on the Boltzmann entropy optimization procedure is considered for the case of one-dimensional flows. The conditions for realizability of the mixed three moments chosen as the energy density and two partial heat fluxes are established. The domain of admissible values of those moments is determined and the existence of the solution to the optimization problem is proved. Here, the standard approaches related to either the truncated Hausdorff or Markov moment problems do not apply because the non-negative fermionic distribution function, denoted
We study weak solutions of the homogeneous Boltzmann equation for Maxwellian molecules with a logarithmic singularity of the collision kernel for grazing collisions. Even though in this situation the Boltzmann operator enjoys only a very weak coercivity estimate, it still leads to strong smoothing of weak solutions in accordance to the smoothing expected by an analogy with a logarithmic heat equation.
We consider some extensions of the classical discrete Boltzmann equation to the cases of multicomponent mixtures, polyatomic molecules (with a finite number of different internal energies), and chemical reactions, but also general discrete quantum kinetic Boltzmann-like equations; discrete versions of the Nordheim-Boltzmann (or Uehling-Uhlenbeck) equation for bosons and fermions and a kinetic equation for excitations in a Bose gas interacting with a Bose-Einstein condensate. In each case we have an H-theorem and so for the planar stationary half-space problem, we have convergence to an equilibrium distribution at infinity (or at least a manifold of equilibrium distributions). In particular, we consider the nonlinear half-space problem of condensation and evaporation for these discrete Boltzmann-like equations. We assume that the flow tends to a stationary point at infinity and that the outgoing flow is known at the wall, maybe also partly linearly depending on the incoming flow. We find that the systems we obtain are of similar structures as for the classical discrete Boltzmann equation (for single species), and that previously obtained results for the discrete Boltzmann equation can be applied after being generalized. Then the number of conditions on the assigned data at the wall needed for existence of a unique solution is found. The number of parameters to be specified in the boundary conditions depends on if we have subsonic or supersonic condensation or evaporation. All our results are valid for any finite number of velocities.
In gas dynamics, the connection between the continuum physics model offered by the Navier-Stokes equations and the heat equation and the molecular model offered by the kinetic theory of gases has been understood for some time, especially through the work of Chapman and Enskog, but it has never been established rigorously. This paper established a precise bridge between these two models for a simple linear Boltzman-like equation. Specifically a special class of solutions, the grossly determined solutions, of this kinetic model are shown to exist and satisfy closed form balance equations representing a class of continuum model solutions.
We consider a two dimensional collisionless plasma interacting with a fixed background of positive charge, the density of which depends only upon velocity variable
We study a Cucker-Smale-type system with time delay in which agents interact with each other through normalized communication weights. We construct a Lyapunov functional for the system and provide sufficient conditions for asymptotic flocking, i.e., convergence to a common velocity vector. We also carry out a rigorous limit passage to the mean-field limit of the particle system as the number of particles tends to infinity. For the resulting Vlasov-type equation we prove the existence, stability and large-time behavior of measure-valued solutions. This is, to our best knowledge, the first such result for a Vlasov-type equation with time delay. We also present numerical simulations of the discrete system with few particles that provide further insights into the flocking and oscillatory behaviors of the particle velocities depending on the size of the time delay.
This paper considers the initial boundary problem to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. The global existence and uniqueness of large strong solutions are established when the heat conductivity coefficient
for some constants
In this paper, the applicability of the entropy method for the trend towards equilibrium for reaction-diffusion systems arising from first order chemical reaction networks is studied. In particular, we present a suitable entropy structure for weakly reversible reaction networks without detail balance condition.
We show by deriving an entropy-entropy dissipation estimate that for any weakly reversible network each solution trajectory converges exponentially fast to the unique positive equilibrium with computable rates. This convergence is shown to be true even in cases when the diffusion coefficients of all but one species are zero.
For non-weakly reversible networks consisting of source, transmission and target components, it is shown that species belonging to a source or transmission component decay to zero exponentially fast while species belonging to a target component converge to the corresponding positive equilibria, which are determined by the dynamics of the target component and the mass injected from other components. The results of this work, in some sense, complete the picture of trend to equilibrium for first order chemical reaction networks.
It is interesting to analyze the mutual influence of relativistic effect and electrostatic potential force on the qualitative behaviors of charge particles simulated by the one-species relativistic Vlasov-Poisson-Landau (rVPL) system with the physical Coulombic interaction. In this paper, we first study the spectrum structure on the linearized rVPL system and obtain the optimal time decay rates of the solutions to the linearized system, and then we construct global strong solutions to the nonlinear system around a global relativistic Maxwellian. Finally we make use of time decay rates of the solutions to the linearized system and uniform energy estimates to establish the time decay of the global solution to the original Cauchy problem for the rVPL system to the absolute Maxwellian at the optimal convergence rate
Mixed-moment models, introduced in [
We consider the diffusive limit of an unsteady neutron transportequation in a two-dimensional plate with one-speed velocity. We show the solution can be approximated by the sum of interior solution, initial layer, and boundary layer with geometric correction. Also, we construct a counterexample to the classical theory in [
The Cauchy problem of the reduced gravity two and a half layer model in dimension three isconsidered. We obtain the pointwise estimates of the time-asymptotic shape of the solution, which exhibit two kinds of the generalized Huygens' waves. It is a significant different phenomenon from the Navier-Stokes system. Lastly, as a byproduct, we also extend
This paper is concerned with the planar magnetohydrodynamicswith initial data whose behaviors at far fields
We derive lower bounds on the resolvent operator for the linearized steady Boltzmann equation over weighted
2020
Impact Factor: 1.432
5 Year Impact Factor: 1.641
2020 CiteScore: 3.1
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]