ISSN:

1937-5093

eISSN:

1937-5077

All Issues

## Kinetic & Related Models

December 2020 , Volume 13 , Issue 6

Select all articles

Export/Reference:

*+*[Abstract](526)

*+*[HTML](111)

*+*[PDF](583.34KB)

**Abstract:**

We study the rate of convergence to equilibrium for a collisionless (Knudsen) gas enclosed in a vessel in dimension

*+*[Abstract](422)

*+*[HTML](120)

*+*[PDF](570.63KB)

**Abstract:**

In this paper, we develop a new strategy aimed at obtaining high-order asymptotic models for transport equations with highly-oscillatory solutions. The technique relies upon recent developments averaging theory for ordinary differential equations, in particular normal form expansions in the vanishing parameter. Noteworthy, the result we state here also allows for the complete recovery of the exact solution from the asymptotic model. This is done by solving a companion transport equation that stems naturally from the change of variables underlying high-order averaging. Eventually, we apply our technique to the Vlasov equation with external electric and magnetic fields. Both constant and non-constant magnetic fields are envisaged, and asymptotic models already documented in the literature are re-derived using our methodology. In addition, it is shown how to obtain new high-order asymptotic models.

*+*[Abstract](483)

*+*[HTML](113)

*+*[PDF](467.81KB)

**Abstract:**

The time evolution of a collisionless plasma is modeled by the relativistic Vlasov–Maxwell system which couples the Vlasov equation (the transport equation) with the Maxwell equations of electrodynamics. In this work, the setting is two and one-half dimensional, that is, the distribution functions of the particles species are independent of the third space dimension. We consider the case that the plasma is located in an infinitely long cylinder and is influenced by an external magnetic field. We prove existence of stationary solutions and give conditions on the external magnetic field under which the plasma is confined inside the cylinder, i.e., it stays away from the boundary of the cylinder.

*+*[Abstract](524)

*+*[HTML](141)

*+*[PDF](595.9KB)

**Abstract:**

Entropic property of the Ellipsoidal Statistical model with the Prandtl number Pr below 2/3 is discussed. Although 2/3 is the lower bound of Pr for the H theorem to hold unconditionally, it is shown that the theorem still holds even for

*+*[Abstract](413)

*+*[HTML](90)

*+*[PDF](390.82KB)

**Abstract:**

This article is concerned with the existence of a weak solution to the initial boundary problem for a cross-diffusion system which arises in the study of two cell population growth. The mathematical challenge is due to the fact that the coefficient matrix is non-symmetric and degenerate in the sense that its determinant is

*+*[Abstract](360)

*+*[HTML](137)

*+*[PDF](516.43KB)

**Abstract:**

In this paper, we establish derivative estimates for the Vlasov-Poisson system with screening interactions around Penrose-stable equilibria on the phase space

*+*[Abstract](337)

*+*[HTML](79)

*+*[PDF](1966.53KB)

**Abstract:**

In this article an anisotropic interaction model avoiding collisions is proposed. Starting point is a general isotropic interacting particle system, as used for swarming or follower-leader dynamics. An anisotropy is induced by rotation of the force vector resulting from the interaction of two agents. In this way the anisotropy is leading to a smooth evasion behaviour. In fact, the proposed model generalizes the standard models, and compensates their drawback of not being able to avoid collisions. Moreover, the model allows for formal passage to the limit 'number of particles to infinity', leading to a mesoscopic description in the mean-field sense. Possible applications are autonomous traffic, swarming or pedestrian motion. Here, we focus on the latter, as the model is validated numerically using two scenarios in pedestrian dynamics. The first one investigates the pattern formation in a channel, where two groups of pedestrians are walking in opposite directions. The second experiment considers a crossing with one group walking from left to right and the other one from bottom to top. The well-known pattern of lanes in the channel and travelling waves at the crossing can be reproduced with the help of this anisotropic model at both, the microscopic and the mesoscopic level. In addition, the 'right-before-left' and 'left-before-right' rule appear intrinsically for different anisotropy parameters.

*+*[Abstract](305)

*+*[HTML](73)

*+*[PDF](1189.65KB)

**Abstract:**

This work aims to develop and test a projection technique for the construction of closing equations of moment systems. One possibility to define such a closure consists in reconstructing an underlying kinetic distribution from a vector of moments, then expressing the closure based on this reconstructed function.

Exploiting the geometry of the realizability domain, *i.e.* the set of moments of positive distribution function, we decompose any realizable vectors into two parts, one corresponding to the moments of a chosen equilibrium function, and one obtain by a projection onto the boundary of the realizability domain in the direction of equilibrium function. A realizable closure of both of these parts are computed with standard techniques providing a realizable closure for the full system. This technique is tested for the reduction of a radiative transfer equation in slab geometry.

2019 Impact Factor: 1.311

## Readers

## Authors

## Editors

## Referees

## Librarians

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]