All Issues

Volume 14, 2022

Volume 13, 2021

Volume 12, 2020

Volume 11, 2019

Volume 10, 2018

Volume 9, 2017

Volume 8, 2016

Volume 7, 2015

Volume 6, 2014

Volume 5, 2013

Volume 4, 2012

Volume 3, 2011

Volume 2, 2010

Volume 1, 2009

Journal of Geometric Mechanics

June 2010 , Volume 2 , Issue 2

Select all articles


Information-theoretic inequalities on unimodular Lie groups
Gregory S. Chirikjian
2010, 2(2): 119-158 doi: 10.3934/jgm.2010.2.119 +[Abstract](3578) +[PDF](466.0KB)
Classical inequalities used in information theory such as those of de Bruijn, Fisher, Cramér, Rao, and Kullback carry over in a natural way from Euclidean space to unimodular Lie groups. These are groups that possess an integration measure that is simultaneously invariant under left and right shifts. All commutative groups are unimodular. And even in noncommutative cases unimodular Lie groups share many of the useful features of Euclidean space. The rotation and Euclidean motion groups, which are perhaps the most relevant Lie groups to problems in geometric mechanics, are unimodular, as are the unitary groups that play important roles in quantum computing. The extension of core information theoretic inequalities defined in the setting of Euclidean space to this broad class of Lie groups is potentially relevant to a number of problems relating to information gathering in mobile robotics, satellite attitude control, tomographic image reconstruction, biomolecular structure determination, and quantum information theory. In this paper, several definitions are extended from the Euclidean setting to that of Lie groups (including entropy and the Fisher information matrix), and inequalities analogous to those in classical information theory are derived and stated in the form of fifteen small theorems. In all such inequalities, addition of random variables is replaced with the group product, and the appropriate generalization of convolution of probability densities is employed. An example from the field of robotics demonstrates how several of these results can be applied to quantify the amount of information gained by pooling different sensory inputs.
Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics
Manuel de León, Juan Carlos Marrero and David Martín de Diego
2010, 2(2): 159-198 doi: 10.3934/jgm.2010.2.159 +[Abstract](5291) +[PDF](475.8KB)
In this paper, we study the underlying geometry in the classical Hamilton-Jacobi equation. The proposed formalism is also valid for nonholonomic systems. We first introduce the essential geometric ingredients: a vector bundle, a linear almost Poisson structure and a Hamiltonian function, both on the dual bundle (a Hamiltonian system). From them, it is possible to formulate the Hamilton-Jacobi equation, obtaining as a particular case, the classical theory. The main application in this paper is to nonholonomic mechanical systems. For it, we first construct the linear almost Poisson structure on the dual space of the vector bundle of admissible directions, and then, apply the Hamilton-Jacobi theorem. Another important fact in our paper is the use of the orbit theorem to symplify the Hamilton-Jacobi equation, the introduction of the notion of morphisms preserving the Hamiltonian system; indeed, this concept will be very useful to treat with reduction procedures for systems with symmetries. Several detailed examples are given to illustrate the utility of these new developments.
Regularity of generating families of functions
Włodzimierz M. Tulczyjew and Paweł Urbański
2010, 2(2): 199-221 doi: 10.3934/jgm.2010.2.199 +[Abstract](2659) +[PDF](266.4KB)
We describe the geometric structures involved in the variational formulation of physical theories. In presence of these structures, the constitutive set of a physical system can be generated by a family of functions. We discuss conditions, under which a family of functions generates an immersed Lagrangian submanifold. These conditions are given in terms of the Hessian of the family.

2021 Impact Factor: 0.737
5 Year Impact Factor: 0.713
2021 CiteScore: 1.3



Special Issues

Email Alert

[Back to Top]