All Issues

Volume 14, 2022

Volume 13, 2021

Volume 12, 2020

Volume 11, 2019

Volume 10, 2018

Volume 9, 2017

Volume 8, 2016

Volume 7, 2015

Volume 6, 2014

Volume 5, 2013

Volume 4, 2012

Volume 3, 2011

Volume 2, 2010

Volume 1, 2009

Journal of Geometric Mechanics

June 2017 , Volume 9 , Issue 2

Special issue on infinite-dimensional Riemannian geometry, Part I

Select all articles


Martin Bauer, Martins Bruveris and Peter W. Michor
2017, 9(2): i-iii doi: 10.3934/jgm.201702i +[Abstract](2218) +[HTML](1706) +[PDF](31.6KB)
Computing distances and geodesics between manifold-valued curves in the SRV framework
Alice Le Brigant
2017, 9(2): 131-156 doi: 10.3934/jgm.2017005 +[Abstract](3226) +[HTML](76) +[PDF](950.9KB)

This paper focuses on the study of open curves in a Riemannian manifold \begin{document} $M$ \end{document}, and proposes a reparameterization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. in [29] to define a Riemannian metric on the space of immersions \begin{document} $\mathcal{M}=\text{Imm}([0,1],M)$ \end{document} by pullback of a natural metric on the tangent bundle \begin{document} $\text{T}\mathcal{M}$ \end{document}. This induces a first-order Sobolev metric on \begin{document} $\mathcal{M}$ \end{document} and leads to a distance which takes into account the distance between the origins in \begin{document} $M$ \end{document} and the \begin{document} $L^2$ \end{document}-distance between the SRV representations of the curves. The geodesic equations for this metric are given and exploited to define an exponential map on \begin{document} $\mathcal M$ \end{document}. The optimal deformation of one curve into another can then be constructed using geodesic shooting, which requires to characterize the Jacobi fields of \begin{document} $\mathcal M$ \end{document}. The particular case of curves lying in the hyperbolic half-plane \begin{document} $\mathbb H$ \end{document} is considered as an example, in the setting of radar signal processing.

The Madelung transform as a momentum map
Daniel Fusca
2017, 9(2): 157-165 doi: 10.3934/jgm.2017006 +[Abstract](3588) +[HTML](84) +[PDF](353.5KB)

The Madelung transform relates the non-linear Schrödinger equation and a compressible Euler equation known as the quantum hydrodynamical system. We prove that the Madelung transform is a momentum map associated with an action of the semidirect product group \begin{document} $\mathrm{Diff}(\mathbb{R}^{n}) \ltimes H^∞(\mathbb{R}^n; \mathbb{R})$ \end{document}, which is the configuration space of compressible fluids, on the space \begin{document} $Ψ = H^∞(\mathbb{R}^{n}; \mathbb{C})$ \end{document} of wave functions. In particular, this implies that the Madelung transform is a Poisson map taking the natural Poisson bracket on \begin{document} $Ψ$ \end{document} to the compressible fluid Poisson bracket. Moreover, the Madelung transform provides an example of "Clebsch variables" for the hydrodynamical system.

Local well-posedness of the EPDiff equation: A survey
Boris Kolev
2017, 9(2): 167-189 doi: 10.3934/jgm.2017007 +[Abstract](3800) +[HTML](79) +[PDF](498.0KB)

This article is a survey on the local well-posedness problem for the general EPDiff equation. The main contribution concerns recent results on local existence of the geodesics on \begin{document}$\text{Dif}{{\text{f}}^{\infty }}\left( {{\mathbb{T}}^{d}} \right)$\end{document} and \begin{document}$\text{Dif}{{\text{f}}^{\infty }}\left( {{\mathbb{R}}^{d}} \right)$\end{document} when the inertia operator is a non-local Fourier multiplier.

Möbius invariants in image recognition
Konovenko Nadiia and Lychagin Valentin
2017, 9(2): 191-206 doi: 10.3934/jgm.2017008 +[Abstract](3426) +[HTML](65) +[PDF](366.9KB)

In this paper rational differential invariants are used to classify various plane shapes as well as plane domains equipped with an additional geometrical object.

The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions
Yury Neretin
2017, 9(2): 207-225 doi: 10.3934/jgm.2017009 +[Abstract](2875) +[HTML](84) +[PDF](485.4KB)

The group \begin{document} $\text{Diff}\left( {{S}^{1}} \right)$ \end{document} of diffeomorphisms of the circle is an infinite dimensional analog of the real semisimple Lie groups \begin{document} $\text{U}(p,q)$ \end{document}, \begin{document} $\text{Sp}(2n,\mathbb{R})$ \end{document}, \begin{document} $\text{SO}^*(2n)$ \end{document}; the space \begin{document} $Ξ$ \end{document} of univalent functions is an analog of the corresponding classical complex Cartan domains. We present explicit formulas for realizations of highest weight representations of \begin{document} $\text{Diff}\left( {{S}^{1}} \right)$ \end{document} in the space of holomorphic functionals on \begin{document} $Ξ$ \end{document}, reproducing kernels on \begin{document} $Ξ$ \end{document} determining inner products, and expressions ('canonical cocycles') replacing spherical functions.

Quotient elastic metrics on the manifold of arc-length parameterized plane curves
Alice B. Tumpach and Stephen C. Preston
2017, 9(2): 227-256 doi: 10.3934/jgm.2017010 +[Abstract](3303) +[HTML](65) +[PDF](1716.5KB)

We study the pull-back of the 2-parameter family of quotient elastic metrics introduced in [13] on the space of arc-length parameterized curves. This point of view has the advantage of concentrating on the manifold of arc-length parameterized curves, which is a very natural manifold when the analysis of un-parameterized curves is concerned, pushing aside the tricky quotient procedure detailed in [12] of the preshape space of parameterized curves by the reparameterization (semi-)group. In order to study the problem of finding geodesics between two given arc-length parameterized curves under these quotient elastic metrics, we give a precise computation of the gradient of the energy functional in the smooth case as well as a discretization of it, and implement a path-straightening method. This allows us to have a better understanding of how the landscape of the energy functional varies with respect to the parameters.

2021 Impact Factor: 0.737
5 Year Impact Factor: 0.713
2021 CiteScore: 1.3



Special Issues

Email Alert

[Back to Top]