
ISSN:
1941-4889
eISSN:
1941-4897
All Issues
Journal of Geometric Mechanics
March 2022 , Volume 14 , Issue 1
Special issue dedicated to Professor Tony Bloch on the occasion of his 65th birthday: Part II
Select all articles
Export/Reference:
Unmanned Aerial Vehicles (UAVs) have been increasingly used in the context of remote sensing missions such as target search and tracking, mapping, or surveillance monitoring. In the first part of our paper we consider agent dynamics, network topologies, and collective behaviors. The objective is to enable multiple UAVs to collaborate toward a common goal, as one would find in a remote sensing setting. An agreement protocol is carried out by the multi-agents using local information, and without external user input. The second part of the paper focuses on the equations of motion for a specific type of UAV, the quadcopter, and expresses them as an affine nonlinear control system. Finally, we illustrate our work with a simulation of an agreement protocol for dynamically sound quadcopters augmenting the particle graph theoretic approach with orientation and a proper dynamics for quadcopters.
Presented herein are a class of methodologies for conducting constrained motion analysis of rigid bodies within the Udwadia-Kalaba (U-K) formulation. The U-K formulation, primarily devised for systems of particles, is advanced to rigid body dynamics in the geometric mechanics framework and a novel development of U-K formulation for use on nonlinear manifolds, namely the special Euclidean group
We prove a Noether's theorem of the first kind for the so-called restricted fractional Euler-Lagrange equations and their discrete counterpart, introduced in [
The so-called method of phase synchronization has been advocated in a number of papers as a way of decoupling a system of linear second-order differential equations by a linear transformation of coordinates and velocities. This is a rather unusual approach because velocity-dependent transformations in general do not preserve the second-order character of differential equations. Moreover, at least in the case of linear transformations, such a velocity-dependent one defines by itself a second-order system, which need not have anything to do, in principle, with the given system or its reformulation. This aspect, and the related questions of compatibility it raises, seem to have been overlooked in the existing literature. The purpose of this paper is to clarify this issue and to suggest topics for further research in conjunction with the general theory of decoupling in a differential geometric context.
This paper is devoted to rolling motions of one manifold over another of equal dimension, subject to the nonholonomic constraints of no-slip and no-twist, assuming that these motions occur inside a pseudo-Euclidean space. We first introduce a definition of rolling map adjusted to this situation, which generalizes the classical definition of Sharpe [
Student engagement in learning a prescribed body of knowledge can be modeled using optimal control theory, with a scalar state variable representing mastery, or self-perceived mastery, of the material and control representing the instantaneous cognitive effort devoted to the learning task. The relevant costs include emotional and external penalties for incomplete mastery, reduced availability of cognitive resources for other activities, and psychological stresses related to engagement with the learning task. Application of Pontryagin's maximum principle to some simple models of engagement yields solutions of the synthesis problem mimicking familiar behaviors including avoidance, procrastination, and increasing commitment in response to increasing mastery.
2021
Impact Factor: 0.737
5 Year Impact Factor: 0.713
2021 CiteScore: 1.3
Readers
Authors
Editors
Referees
Librarians
Special Issues
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]