ISSN:

2158-2491

eISSN:

2158-2505

## Journal of Computational Dynamics

December 2020 , Volume 7 , Issue 2

Special issue on novel computational approaches and their applications

Select all articles

Export/Reference:

*+*[Abstract](190)

*+*[HTML](46)

*+*[PDF](722.55KB)

**Abstract:**

We consider the following inverse problem for an ordinary differential equation (ODE): given a set of data points

We also study existence, uniqueness, stability and other properties of the recovered field

*+*[Abstract](147)

*+*[HTML](54)

*+*[PDF](4606.91KB)

**Abstract:**

Dynamic Mode Decomposition (DMD) is a data-driven technique to identify a low dimensional linear time invariant dynamics underlying high-dimensional data. For systems in which such underlying low-dimensional dynamics is time-varying, a time-invariant approximation of such dynamics computed through standard DMD techniques may not be appropriate. We focus on DMD techniques for such time-varying systems and develop incremental algorithms for systems without and with exogenous control inputs. We build upon the work in [

*+*[Abstract](103)

*+*[HTML](39)

*+*[PDF](2172.4KB)

**Abstract:**

A single queueing system with time-dependent exponentially distributed arrival processes and exponential machine processes (Kendall notation

*+*[Abstract](114)

*+*[HTML](48)

*+*[PDF](2671.46KB)

**Abstract:**

We consider a simple neural field model in which the state variable is dendritic voltage, and in which somas form a continuous one-dimensional layer. This *neural field* model with *dendritic processing* is formulated as an integro-differential equation. We introduce a computational method for approximating solutions to this nonlocal model, and use it to perform numerical simulations for neuro-biologically realistic choices of anatomical connectivity and nonlinear firing rate function. For the time discretisation we adopt an Implicit-Explicit (IMEX) scheme; the space discretisation is based on a finite-difference scheme to approximate the diffusion term and uses the trapezoidal rule to approximate integrals describing the nonlocal interactions in the model. We prove that the scheme is of first-order in time and second order in space, and can be efficiently implemented if the factorisation of a small, banded matrix is precomputed. By way of validation we compare the outputs of a numerical realisation to theoretical predictions for the onset of a Turing pattern, and to the speed and shape of a travelling front for a specific choice of Heaviside firing rate. We find that theory and numerical simulations are in excellent agreement.

*+*[Abstract](106)

*+*[HTML](41)

*+*[PDF](5646.28KB)

**Abstract:**

We consider the initial-boundary value problem for the 3D regularized compressible isothermal Navier–Stokes–Cahn–Hilliard equations describing flows of a two-component two-phase mixture taking into account capillary effects. We construct a new numerical semi-discrete finite-difference method using staggered meshes for the main unknown functions. The method allows one to improve qualitatively the computational flow dynamics by eliminating the so-called parasitic currents and keeping the component concentration inside the physically reasonable range

*+*[Abstract](152)

*+*[HTML](48)

*+*[PDF](2929.21KB)

**Abstract:**

The Finite-Time Lyapunov Exponent (FTLE) is a well-established numerical tool for assessing stretching rates of initial parcels of fluid, which are advected according to a given time-varying velocity field (which is often available only as data). When viewed as a field over initial conditions, the FTLE's spatial structure is often used to infer the nonhomogeneous transport. Given the measurement and resolution errors inevitably present in the unsteady velocity data, the computed FTLE field should in reality be treated only as an approximation. A method which, for the first time, is able for attribute spatially-varying errors to the FTLE field is developed. The formulation is, however, confined to two-dimensional flows. Knowledge of the errors prevent reaching erroneous conclusions based only on the FTLE field. Moreover, it is established that increasing the spatial resolution does not improve the accuracy of the FTLE field in the presence of velocity uncertainties, and indeed has the opposite effect. Stochastic simulations are used to validate and exemplify these results, and demonstrate the computability of the error field.

*+*[Abstract](143)

*+*[HTML](38)

*+*[PDF](619.12KB)

**Abstract:**

In this paper we introduce a procedure, based on the method of equivariant moving frames, for formulating continuous Galerkin finite element schemes that preserve the Lie point symmetries of initial value problems for ordinary differential equations. Our methodology applies to projectable and non-projectable symmetry group actions, to ordinary differential equations of arbitrary order, and finite element approximations of arbitrary polynomial degree. Several examples are included to illustrate various features of the symmetry-preserving process. We summarise extensive numerical experiments showing that symmetry-preserving finite element schemes may provide better long term accuracy than their non-invariant counterparts and can be implemented on larger elements.

*+*[Abstract](136)

*+*[HTML](49)

*+*[PDF](6099.9KB)

**Abstract:**

Coherent structures are spatially varying regions which disperse minimally over time and organise motion in non-autonomous systems. This work develops and implements algorithms providing multilayered descriptions of time-dependent systems which are not only useful for locating coherent structures, but also for detecting time windows within which these structures undergo fundamental structural changes, such as merging and splitting events. These algorithms rely on singular value decompositions associated to Ulam type discretisations of transfer operators induced by dynamical systems, and build on recent developments in multiplicative ergodic theory. Furthermore, they allow us to investigate various connections between the evolution of relevant singular value decompositions and dynamical features of the system. The approach is tested on models of periodically and quasi-periodically driven systems, as well as on a geophysical dataset corresponding to the splitting of the Southern Polar Vortex.

*+*[Abstract](115)

*+*[HTML](52)

*+*[PDF](1078.9KB)

**Abstract:**

Degree assortativity refers to the increased or decreased probability of connecting two neurons based on their in- or out-degrees, relative to what would be expected by chance. We investigate the effects of such assortativity in a network of theta neurons. The Ott/Antonsen ansatz is used to derive equations for the expected state of each neuron, and these equations are then coarse-grained in degree space. We generate families of effective connectivity matrices parametrised by assortativity coefficient and use SVD decompositions of these to efficiently perform numerical bifurcation analysis of the coarse-grained equations. We find that of the four possible types of degree assortativity, two have no effect on the networks' dynamics, while the other two can have a significant effect.

*+*[Abstract](155)

*+*[HTML](51)

*+*[PDF](643.35KB)

**Abstract:**

Birkhoff normal forms are commonly used in order to ensure the so called "effective stability" in the neighborhood of elliptic equilibrium points for Hamiltonian systems. From a theoretical point of view, this means that the eventual diffusion can be bounded for time intervals that are exponentially large with respect to the inverse of the distance of the initial conditions from such equilibrium points. Here, we focus on an approach that is suitable for practical applications: we extend a rather classical scheme of estimates for both the Birkhoff normal forms to any finite order and their remainders. This is made for providing explicit lower bounds of the stability time (that are valid for initial conditions in a fixed open ball), by using a fully rigorous computer-assisted procedure. We apply our approach in two simple contexts that are widely studied in Celestial Mechanics: the Hénon-Heiles model and the Circular Planar Restricted Three-Body Problem. In the latter case, we adapt our scheme of estimates for covering also the case of resonant Birkhoff normal forms and, in some concrete models about the motion of the Trojan asteroids, we show that it can be more advantageous with respect to the usual non-resonant ones.

*+*[Abstract](117)

*+*[HTML](66)

*+*[PDF](966.48KB)

**Abstract:**

We describe a renormalization method in maps of the plane

The subtle interplay of branches and of the hyperbolic neighborhood can hopefully help visualize the renormalization approach theoretically discussed in [

*+*[Abstract](141)

*+*[HTML](50)

*+*[PDF](669.04KB)

**Abstract:**

In this research, we investigate the application of Dynamic Mode Decomposition combined with Kalman Filtering, Smoothing, and Wavelet Denoising (DMD-KF-W) for denoising time-resolved data. We also compare the performance of this technique with state-of-the-art denoising methods such as Total Variation Diminishing (TV) and Divergence-Free Wavelets (DFW), when applicable. Dynamic Mode Decomposition (DMD) is a data-driven method for finding the spatio-temporal structures in time series data. In this research, we use an autoregressive linear model resulting from applying DMD to the time-resolved data as a predictor in a Kalman Filtering-Smoothing framework for the purpose of denoising. The DMD-KF-W method is parameter-free and runs autonomously. Tests on numerical phantoms show lower error metrics when compared to TV and DFW, when applicable. In addition, DMD-KF-W runs an order of magnitude faster than DFW and TV. In the case of synthetic datasets, where the noise-free datasets were available, our method was shown to perform better than TV and DFW methods (when applicable) in terms of the defined error metric.

*+*[Abstract](145)

*+*[HTML](46)

*+*[PDF](2136.24KB)

**Abstract:**

We consider the bifurcation diagram in a suitable parameter plane of a quadratic vector field in

We present an adaptation of the technique known as Lin's method that enables us to compute such connecting orbits to infinity. We first perform a weighted directional compactification of

*+*[Abstract](102)

*+*[HTML](45)

*+*[PDF](2953.16KB)

**Abstract:**

Algorithms proposed for solving high-dimensional optimization problems with no derivative information frequently encounter the "curse of dimensionality, " becoming ineffective as the dimension of the parameter space grows. One feature of a subclass of such problems that are *effectively* low-dimensional is that only a few parameters (or combinations thereof) are important for the optimization and must be explored in detail. Knowing these parameters/combinations *in advance* would greatly simplify the problem and its solution. We propose the data-driven construction of an *effective* (coarse-grained, "trend") optimizer, based on data obtained from ensembles of brief simulation bursts with an "inner" optimization algorithm, that has the potential to accelerate the exploration of the parameter space. The trajectories of this "effective optimizer" quickly become attracted onto a slow manifold parameterized by the few relevant parameter combinations. We obtain the parameterization of this low-dimensional, effective optimization manifold *on the fly* using data mining/manifold learning techniques on the results of simulation (inner optimizer iteration) burst ensembles and exploit it locally to "jump" forward along this manifold. As a result, we can bias the exploration of the parameter space towards the few, important directions and, through this "wrapper algorithm, " speed up the convergence of traditional optimization algorithms.

## Readers

## Authors

## Editors

## Librarians

## Referees

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]