
ISSN:
2158-2491
eISSN:
2158-2505
All Issues
Journal of Computational Dynamics
July 2021 , Volume 8 , Issue 3
Select all articles
Export/Reference:
We propose a discretization of vector fields that are Hamiltonian up to multiplication by a positive function on the phase space that may be interpreted as a time reparametrization. We construct a family of maps, labeled by an arbitrary
We present twelve numerical methods for evaluation of objects and concepts from Poisson geometry. We describe how each method works with examples, and explain how it is executed in code. These include methods that evaluate Hamiltonian and modular vector fields, compute the image under the coboundary and trace operators, the Lie bracket of differential 1–forms, gauge transformations, and normal forms of Lie–Poisson structures on
In this paper we study nonlinear autonomous retarded functional differential equations; that is, functional equations where the time derivative may depend on the past values of the variables. When the nonlinearities in such equations are comprised of elementary functions, we give a constructive proof of the existence of an embedding of the original coordinates yielding a polynomial differential equation. This embedding is a topological conjugacy between the semi-flow of the original differential equation and the semi-flow of the auxiliary polynomial differential equation. Further dynamical features are investigated; notably, for an equilibrium or a periodic orbit and its embedded counterpart, the stable and unstable eigenvalues have the same algebraic and geometric multiplicity.
Covariant Lyapunov Vectors (CLVs) are intrinsic modes that describe long-term linear perturbations of solutions of dynamical systems. With recent advances in the context of semi-invertible multiplicative ergodic theorems, existence of CLVs has been proved for various infinite-dimensional scenarios. Possible applications include the derivation of coherent structures via transfer operators or the stability analysis of linear perturbations in models of increasingly higher resolutions.
We generalize the concept of Ginelli's algorithm to compute CLVs in Hilbert spaces. Our main result is a convergence theorem in the setting of [
In this paper we present a rigorous numerical method for validating analytic solutions of nonlinear ODEs by using Chebyshev-series and domain decomposition. The idea is to define a Newton-like operator, whose fixed points correspond to solutions of the ODE, on the space of geometrically decaying Chebyshev coefficients, and to use the so-called radii-polynomial approach to prove that the operator has an isolated fixed point in a small neighborhood of a numerical approximation. The novelty of the proposed method is the use of Chebyshev series in combination with domain decomposition. In particular, a heuristic procedure based on the theory of Chebyshev approximations for analytic functions is presented to construct efficient grids for validating solutions of boundary value problems. The effectiveness of the proposed method is demonstrated by validating long periodic and connecting orbits in the Lorenz system for which validation without domain decomposition is not feasible.
2021 CiteScore: 1.7
Readers
Authors
Editors
Librarians
Referees
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]