
eISSN:
2163-2480
All Issues
Evolution Equations and Control Theory
June 2022 , Volume 11 , Issue 3
Select all articles
Export/Reference:
This paper is mainly concerned with the existence of pseudo S-asymptotically Bloch type periodic solutions to damped evolution equations in Banach spaces. Some existence results for classical Cauchy conditions and nonlocal Cauchy conditions are established through properties of pseudo S-asymptotically Bloch type periodic functions and regularized families. The obtained results show that for each pseudo S-asymptotically Bloch type periodic input forcing disturbance, the output mild solutions to reference equations remain pseudo S-asymptotically Bloch type periodic.
In this paper, a strongly damped semilinear wave equation with a general nonlinearity is considered. With the help of a newly constructed auxiliary functional and the concavity argument, a general finite time blow-up criterion is established for this problem. Furthermore, the lifespan of the weak solution is estimated from both above and below. This partially extends some results obtained in recent literatures and sheds some light on the similar effect of power type nonlinearity and logarithmic nonlinearity on finite time blow-up of solutions to such problems.
The convective Brinkman-Forchheimer (CBF) equations describe the motion of incompressible viscous fluids through a rigid, homogeneous, isotropic, porous medium and is given by
In this work, we consider some distributed optimal control problems like total energy minimization, minimization of enstrophy, etc governed by the two dimensional CBF equations with the absorption exponent
In this work we consider the exact controllability and stabilization on a periodic domain for the generalized Benjamin-Ono type system for internal waves. The exact controllability of the linearized model is proved by using the moment method and spectral analysis. In order to get the same result for the nonlinear model, we use a fixed point argument in Sobolev spaces.
In this paper we prove the exponential decay of the energy for the high-order Kadomtsev-Petviashvili II equation with localized damping. To do that, we use the classical dissipation-observability method and a unique continuation principle introduced by Bourgain in [
In this paper, a generalized Motsch-Tadmor model with piecewise interaction function is investigated, which can be viewed as a generalization of the model proposed in [
In this paper, we establish a local null controllability result for a nonlinear parabolic PDE with local and nonlocal nonlinearities in a domain whose boundary moves in time by a control force with a multiplicative part acting on a prescribed subdomain. We prove that, if the initial data is sufficiently small and the linearized system at zero satisfies an appropriate condition, the equation can be driven to zero.
This paper deals with the following viscoelastic wave equation with a strong damping and logarithmic nonlinearity:
A finite time blow-up result is proved for high initial energy. Meanwhile, the lifespan of the weak solution is discussed. The present results in this paper complement and improve the previous work that is obtained by Ha and Park [Adv. Differ. Equ., (2020) 2020: 235].
The objective of this paper is twofold. First, we conduct a careful study of various functional inequalities involving the fractional Laplacian operators, including nonlocal Sobolev-Poincaré, Nash, Super Poincaré and logarithmic Sobolev type inequalities, on complete Riemannian manifolds satisfying some mild geometric assumptions. Second, based on the derived nonlocal functional inequalities, we analyze the asymptotic behavior of the solution to the fractional porous medium equation,
A class of differential quasi-variational-hemivariational inequalities (DQVHI, for short) is studied in this paper. First, based on the Browder's result, KKM theorem and monotonicity arguments, we prove the superpositionally measurability, convexity and strongly-weakly upper semicontinuity for the solution set of a general quasi-variational-hemivariational inequality. Further, by using optimal control theory, measurability of set-valued mappings and the theory of semigroups, we establish that the solution set of (DQVHI) is nonempty and compact. This kind of evolutionary problems incorporates various classes of problems and models.
In this paper we consider the Schrödinger equation with nonlinear derivative term. Our goal is to initiate the study of this equation with non vanishing boundary conditions. We obtain the local well posedness for the Cauchy problem on Zhidkov spaces
The goal of this paper is to provide new proofs of the persistence of superoscillations under the Schrödinger equation. Superoscillations were first put forward by Aharonov and have since received much study because of connections to physics, engineering, signal processing and information theory. An interesting mathematical question is to understand the time evolution of superoscillations under certain Schrödinger equations arising in physics. This paper provides an alternative proof of the persistence of superoscillations by some elementary convergence facts for sequence and series and some connections with certain polynomials and identities in combinatorics. The approach given opens new perspectives to establish persistence of superoscillations for the Schrödinger equation with more general potentials.
This work focuses on the long time behavior for a size-dependent population system with diffusion and Riker type birth function. Some dynamical properties of the considered system is investigated by using
In this paper, we study the existence and uniqueness of mild solutions for neutral delay Hilfer fractional integrodifferential equations with fractional Brownian motion. Sufficient conditions for controllability of neutral delay Hilfer fractional differential equations with fractional Brownian motion are established. The required results are obtained based on the fixed point theorem combined with the semigroup theory, fractional calculus and stochastic analysis. Finally, an example is given to illustrate the obtained results.
In this article, we study the local stabilization of the viscous Burgers equation with memory around the steady state zero using localized interior controls. We first consider the linearized equation around zero which corresponds to a system coupled between a parabolic equation and an ODE. We show the feedback stabilization of the system with any exponential decay
In this paper, we consider a doubly nonlinear parabolic equation
2021
Impact Factor: 1.169
5 Year Impact Factor: 1.294
2021 CiteScore: 2
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]