eISSN:
 2639-8001

All Issues

Volume 2, 2020

Volume 1, 2019

FoDS Flyer: showing all essential information of the journal.
Foundations of Data Science (FoDS) invites submissions focusing on advances in mathematical, statistical, and computational methods for data science. Results should significantly advance current understanding of data science, by algorithm development, analysis, and/or computational implementation which demonstrates behavior and applicability of the algorithm. Fields covered by the journal include, but are not limited to Bayesian Statistics, High Performance Computing, Inverse Problems, Data Assimilation, Machine Learning, Optimization, Topological Data Analysis, Spatial Statistics, Nonparametric Statistics, Uncertainty Quantification, and Data Centric Engineering. Expository and review articles are welcome. Papers which focus on applications in science and engineering are also encouraged, however the method(s) used should be applicable outside of one specific application domain.

Call for Papers Special Issue "Data Science Education Research" of Foundations of Data Science (click to view details)

Call for Papers Special Issue "Topological methods in data analysis, machine learning and artificial intelligence" of Foundations of Data Science (click to view details)

Call for Papers Special Issue "Data Assimilation" of Foundations of Data Science (click to view details)

Call for Papers Special Issue "Sequential Monte Carlo Methods" of Foundations of Data Science (click to view details)

Select all articles

Export/Reference:

The rankability of weighted data from pairwise comparisons
Paul E. Anderson, Timothy P. Chartier, Amy N. Langville and Kathryn E. Pedings-Behling
2021, 3(1) : 1-26 doi: 10.3934/fods.2021002 +[Abstract](617) +[HTML](196) +[PDF](3603.92KB)
Markov chain simulation for multilevel Monte Carlo
Ajay Jasra, Kody J. H. Law and Yaxian Xu
2021, 3(1) : 27-47 doi: 10.3934/fods.2021004 +[Abstract](350) +[HTML](156) +[PDF](656.57KB)
A topological approach to spectral clustering
Antonio Rieser
2021, 3(1) : 49-66 doi: 10.3934/fods.2021005 +[Abstract](297) +[HTML](117) +[PDF](1102.91KB)
HERMES: Persistent spectral graph software
Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong and Guo-Wei Wei
2021, 3(1) : 67-97 doi: 10.3934/fods.2021006 +[Abstract](258) +[HTML](112) +[PDF](4748.55KB)
Online learning of both state and dynamics using ensemble Kalman filters
Marc Bocquet, Alban Farchi and Quentin Malartic
2020doi: 10.3934/fods.2020015 +[Abstract](769) +[HTML](343) +[PDF](789.8KB)
Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds
Zhiyan Ding, Qin Li and Jianfeng Lu
2020doi: 10.3934/fods.2020018 +[Abstract](588) +[HTML](242) +[PDF](1612.75KB)
An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation
Geir Evensen, Javier Amezcua, Marc Bocquet, Alberto Carrassi, Alban Farchi, Alison Fowler, Pieter L. Houtekamer, Christopher K. Jones, Rafael J. de Moraes, Manuel Pulido, Christian Sampson and Femke C. Vossepoel
2020doi: 10.3934/fods.2021001 +[Abstract](774) +[HTML](296) +[PDF](20192.86KB)
Mean field limit of Ensemble Square Root filters - discrete and continuous time
Theresa Lange and Wilhelm Stannat
2021doi: 10.3934/fods.2021003 +[Abstract](364) +[HTML](161) +[PDF](434.65KB)
The (homological) persistence of gerrymandering
Moon Duchin, Tom Needham and Thomas Weighill
2021doi: 10.3934/fods.2021007 +[Abstract](339) +[HTML](118) +[PDF](23416.84KB)
Intrinsic disease maps using persistent cohomology
Daniel Amin and Mikael Vejdemo-Johansson
2021doi: 10.3934/fods.2021008 +[Abstract](153) +[HTML](48) +[PDF](720.82KB)
Wave-shape oscillatory model for nonstationary periodic time series analysis
Yu-Ting Lin, John Malik and Hau-Tieng Wu
2021doi: 10.3934/fods.2021009 +[Abstract](67) +[HTML](34) +[PDF](10323.47KB)
On the linear ordering problem and the rankability of data
Thomas R. Cameron, Sebastian Charmot and Jonad Pulaj
2021doi: 10.3934/fods.2021010 +[Abstract](63) +[HTML](20) +[PDF](1526.43KB)
Iterative ensemble Kalman methods: A unified perspective with some new variants
Neil K. Chada, Yuming Chen and Daniel Sanz-Alonso
2021doi: 10.3934/fods.2021011 +[Abstract](62) +[HTML](14) +[PDF](1587.31KB)
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization
Marc Bocquet, Julien Brajard, Alberto Carrassi and Laurent Bertino
2020, 2(1) : 55-80 doi: 10.3934/fods.2020004 +[Abstract](2492) +[HTML](845) +[PDF](800.0KB) Cited By(10)
Consistent manifold representation for topological data analysis
Tyrus Berry and Timothy Sauer
2019, 1(1) : 1-38 doi: 10.3934/fods.2019001 +[Abstract](3762) +[HTML](1708) +[PDF](3141.49KB) Cited By(3)
Semi-supervised classification on graphs using explicit diffusion dynamics
Robert L. Peach, Alexis Arnaudon and Mauricio Barahona
2020, 2(1) : 19-33 doi: 10.3934/fods.2020002 +[Abstract](1450) +[HTML](762) +[PDF](347.25KB) Cited By(3)
Accelerating Metropolis-Hastings algorithms by Delayed Acceptance
Marco Banterle, Clara Grazian, Anthony Lee and Christian P. Robert
2019, 1(2) : 103-128 doi: 10.3934/fods.2019005 +[Abstract](3106) +[HTML](1677) +[PDF](685.26KB) Cited By(2)
Power weighted shortest paths for clustering Euclidean data
Daniel Mckenzie and Steven Damelin
2019, 1(3) : 307-327 doi: 10.3934/fods.2019014 +[Abstract](1697) +[HTML](894) +[PDF](663.53KB) Cited By(2)
Partitioned integrators for thermodynamic parameterization of neural networks
Benedict Leimkuhler, Charles Matthews and Tiffany Vlaar
2019, 1(4) : 457-489 doi: 10.3934/fods.2019019 +[Abstract](1823) +[HTML](832) +[PDF](10550.03KB) Cited By(2)
Learning by active nonlinear diffusion
Mauro Maggioni and James M. Murphy
2019, 1(3) : 271-291 doi: 10.3934/fods.2019012 +[Abstract](2273) +[HTML](921) +[PDF](4001.74KB) Cited By(2)
Levels and trends in the sex ratio at birth and missing female births for 29 states and union territories in India 1990–2016: A Bayesian modeling study
Fengqing Chao and Ajit Kumar Yadav
2019, 1(2) : 177-196 doi: 10.3934/fods.2019008 +[Abstract](2627) +[HTML](932) +[PDF](2577.91KB) Cited By(2)
Multi-fidelity generative deep learning turbulent flows
Nicholas Geneva and Nicholas Zabaras
2020, 2(4) : 391-428 doi: 10.3934/fods.2020019 +[Abstract](716) +[HTML](246) +[PDF](14569.45KB) Cited By(1)
On the incorporation of box-constraints for ensemble Kalman inversion
Neil K. Chada, Claudia Schillings and Simon Weissmann
2019, 1(4) : 433-456 doi: 10.3934/fods.2019018 +[Abstract](1288) +[HTML](789) +[PDF](1289.35KB) Cited By(1)
Issues using logistic regression with class imbalance, with a case study from credit risk modelling
Yazhe Li, Tony Bellotti and Niall Adams
2019, 1(4) : 389-417 doi: 10.3934/fods.2019016 +[Abstract](2140) +[HTML](826) +[PDF](4084.46KB) PDF Downloads(2170)
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization
Marc Bocquet, Julien Brajard, Alberto Carrassi and Laurent Bertino
2020, 2(1) : 55-80 doi: 10.3934/fods.2020004 +[Abstract](2492) +[HTML](845) +[PDF](800.0KB) PDF Downloads(620)
Stochastic gradient descent algorithm for stochastic optimization in solving analytic continuation problems
Feng Bao and Thomas Maier
2020, 2(1) : 1-17 doi: 10.3934/fods.2020001 +[Abstract](1869) +[HTML](830) +[PDF](418.16KB) PDF Downloads(440)
Probabilistic learning on manifolds
Christian Soize and Roger Ghanem
2020, 2(3) : 279-307 doi: 10.3934/fods.2020013 +[Abstract](1082) +[HTML](557) +[PDF](722.55KB) PDF Downloads(329)
Accelerating Metropolis-Hastings algorithms by Delayed Acceptance
Marco Banterle, Clara Grazian, Anthony Lee and Christian P. Robert
2019, 1(2) : 103-128 doi: 10.3934/fods.2019005 +[Abstract](3106) +[HTML](1677) +[PDF](685.26KB) PDF Downloads(324)
Consistent manifold representation for topological data analysis
Tyrus Berry and Timothy Sauer
2019, 1(1) : 1-38 doi: 10.3934/fods.2019001 +[Abstract](3762) +[HTML](1708) +[PDF](3141.49KB) PDF Downloads(320)
Semi-supervised classification on graphs using explicit diffusion dynamics
Robert L. Peach, Alexis Arnaudon and Mauricio Barahona
2020, 2(1) : 19-33 doi: 10.3934/fods.2020002 +[Abstract](1450) +[HTML](762) +[PDF](347.25KB) PDF Downloads(311)
Modelling dynamic network evolution as a Pitman-Yor process
Francesco Sanna Passino and Nicholas A. Heard
2019, 1(3) : 293-306 doi: 10.3934/fods.2019013 +[Abstract](2118) +[HTML](1078) +[PDF](1164.04KB) PDF Downloads(299)
Quantum topological data analysis with continuous variables
George Siopsis
2019, 1(4) : 419-431 doi: 10.3934/fods.2019017 +[Abstract](1748) +[HTML](1168) +[PDF](1473.63KB) PDF Downloads(256)
Particle filters for inference of high-dimensional multivariate stochastic volatility models with cross-leverage effects
Yaxian Xu and Ajay Jasra
2019, 1(1) : 61-85 doi: 10.3934/fods.2019003 +[Abstract](2779) +[HTML](1588) +[PDF](935.96KB) PDF Downloads(247)

Editors

Referees

Librarians

Email Alert

[Back to Top]