Electronic Research Archive

March 2020 , Volume 28 , Issue 1

Select all articles


Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence
Yang Yang, Yun-Rui Yang and Xin-Jun Jiao
2020, 28(1): 1-13 doi: 10.3934/era.2020001 +[Abstract](154) +[HTML](78) +[PDF](369.78KB)

In this paper, the existence and non-existence of traveling wave solutions are established for a nonlocal dispersal SIR model equipped delay and generalized incidence. In addition, the existence and asymptotic behaviors of traveling waves under critical wave speed are also contained. Especially, the boundedness of traveling waves is obtained completely without imposing additional conditions on the nonlinear incidence.

Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion Special Issues
Guenbo Hwang and Byungsoo Moon
2020, 28(1): 15-25 doi: 10.3934/era.2020002 +[Abstract](147) +[HTML](77) +[PDF](327.55KB)

In this paper, we consider the dissipative Degasperis-Procesi equation with arbitrary dispersion coefficient and compactly supported initial data. We establish the simple condition on the initial data which lead to guarantee that the solution exists globally. We also investigate the propagation speed for the equation under the initial data is compactly supported.

Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities Special Issues
Yue Cao
2020, 28(1): 27-46 doi: 10.3934/era.2020003 +[Abstract](136) +[HTML](55) +[PDF](346.98KB)

In this paper, the Cauchy problem of the \begin{document}$ 3 $\end{document}D compressible Navier-Stokes equations with degenerate viscosities and far field vacuum is considered. We prove that the \begin{document}$ L^\infty $\end{document} norm of the deformation tensor \begin{document}$ D(u) $\end{document} (\begin{document}$ u $\end{document}: the velocity of fluids) and the \begin{document}$ L^6 $\end{document} norm of \begin{document}$ \nabla \log \rho $\end{document} (\begin{document}$ \rho $\end{document}: the mass density) control the possible blow-up of regular solutions. This conclusion means that if a solution with far field vacuum to the Cauchy problem of the compressible Navier-Stokes equations with degenerate viscosities is initially regular and loses its regularity at some later time, then the formation of singularity must be caused by losing the bound of \begin{document}$ D(u) $\end{document} or \begin{document}$ \nabla \log \rho $\end{document} as the critical time approaches; equivalently, if both \begin{document}$ D(u) $\end{document} and \begin{document}$ \nabla \log \rho $\end{document} remain bounded, a regular solution persists.

The existence of solutions for a shear thinning compressible non-Newtonian models Special Issues
Yukun Song, Yang Chen, Jun Yan and Shuai Chen
2020, 28(1): 47-66 doi: 10.3934/era.2020004 +[Abstract](115) +[HTML](54) +[PDF](413.61KB)

This paper is concerned with the initial boundary value problem for a shear thinning fluid-particle interaction non-Newtonian model with vacuum. The viscosity term of the fluid and the non-Newtonian gravitational force are fully nonlinear. Under Dirichlet boundary for velocity and the no-flux condition for density of particles, the existence and uniqueness of strong solutions is investigated in one dimensional bounded intervals.

Initial boundary value problem for a inhomogeneous pseudo-parabolic equation Special Issues
Jun Zhou
2020, 28(1): 67-90 doi: 10.3934/era.2020005 +[Abstract](141) +[HTML](76) +[PDF](777.08KB)

This paper deals with the global existence and blow-up of solutions to a inhomogeneous pseudo-parabolic equation with initial value \begin{document}$ u_0 $\end{document} in the Sobolev space \begin{document}$ H_0^1( \Omega) $\end{document}, where \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} (\begin{document}$ n\geq1 $\end{document} is an integer) is a bounded domain. By using the mountain-pass level \begin{document}$ d $\end{document} (see (14)), the energy functional \begin{document}$ J $\end{document} (see (12)) and Nehari function \begin{document}$ I $\end{document} (see (13)), we decompose the space \begin{document}$ H_0^1( \Omega) $\end{document} into five parts, and in each part, we show the solutions exist globally or blow up in finite time. Furthermore, we study the decay rates for the global solutions and lifespan (i.e., the upper bound of blow-up time) of the blow-up solutions. Moreover, we give a blow-up result which does not depend on \begin{document}$ d $\end{document}. By using this theorem, we prove the solution can blow up at arbitrary energy level, i.e. for any \begin{document}$ M\in \mathbb{R} $\end{document}, there exists \begin{document}$ u_0\in H_0^1( \Omega) $\end{document} satisfying \begin{document}$ J(u_0) = M $\end{document} such that the corresponding solution blows up in finite time.

Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems Special Issues
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu and Yuanran Zhu
2020, 28(1): 91-102 doi: 10.3934/era.2020006 +[Abstract](137) +[HTML](64) +[PDF](299.33KB)

We study the initial boundary value problem of linear homogeneous wave equation with dynamic boundary condition. We aim to prove the finite time blow-up of the solution at critical energy level or high energy level with the nonlinear damping term on boundary in control systems.

The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $
Huimin Zheng, Xuejun Guo and Hourong Qin
2020, 28(1): 103-125 doi: 10.3934/era.2020007 +[Abstract](99) +[HTML](56) +[PDF](417.89KB)

In this paper we study the Mahler measures of reciprocal polynomials \begin{document}$ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $\end{document} for \begin{document}$ k = 16 $\end{document}, \begin{document}$ k = -104\pm60\sqrt{3} $\end{document}, \begin{document}$ 4096 $\end{document} and \begin{document}$ k = -2024\pm765\sqrt{7} $\end{document}. We prove six conjectural identities proposed by Samart in [16].

2018  Impact Factor: 0.263



Email Alert

[Back to Top]