-
Previous Article
Symmetry exploiting control of hybrid mechanical systems
- JCD Home
- This Issue
-
Next Article
Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013)
Modularity of directed networks: Cycle decomposition approach
1. | Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany, Germany |
References:
[1] |
B. Altaner, S. Grosskinsky, S. Herminghaus, L. Katthän, M. Timme and J. Vollmer, Network representations of nonequilibrium steady states: Cycle decompositions, symmetries, and dominant paths, Phys. Rev. E, 85 (2012), 041133, URL http://link.aps.org/doi/10.1103/PhysRevE.85.041133.
doi: 10.1103/PhysRevE.85.041133. |
[2] |
A. Arenas, J. Duch, A. Fernández and S. Gómez, Size reduction of complex networks preserving modularity, New Journal of Physics, 9 (2007), p176.
doi: 10.1088/1367-2630/9/6/176. |
[3] |
R. Banisch and N. D. Conrad, Cycle-flow based module detection in directed recurrence networks, EPL (Europhysics Letters), 108 (2014), 68008, URL http://stacks.iop.org/0295-5075/108/i=6/a=68008.
doi: 10.1209/0295-5075/108/68008. |
[4] |
A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 3747-3752, URL http://www.pnas.org/content/101/11/3747.abstract.
doi: 10.1073/pnas.0400087101. |
[5] |
G. R. Bowman and V. S. Pande and F. Noé, editors, An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, volume 797 of Advances in Experimental Medicine and Biology, Springer, 2014.
doi: 10.1007/978-94-007-7606-7_11. |
[6] |
J. Chen and B. Yuan, Detecting functional modules in the yeast protein-protein interaction network, Bioinformatics, 22 (2006), 2283-2290.
doi: 10.1093/bioinformatics/btl370. |
[7] |
D. Cvetkovic, P. Rowlinson and S. Simic, Spectral Generalizations of Line Graphs, Cambridge University Press, 2004, Cambridge Books Online.
doi: 10.1017/CBO9780511751752. |
[8] |
P. Deuflhard and M. Weber, Robust perron cluster analysis in conformation dynamics, Linear Algebra and its Applications, 398 (2005), 161-184, URL http://www.sciencedirect.com/science/article/pii/S0024379504004689, Special Issue on Matrices and Mathematical Biology.
doi: 10.1016/j.laa.2004.10.026. |
[9] |
N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Random walks on complex modular networks, Journal of Numerical Analysis, Industrial and Applied Mathematics, 6 (2011), 29-50. |
[10] |
N. Djurdjevac, M. Sarich and C. Schütte, Estimating the eigenvalue error of markov state models, Multiscale Modeling & Simulation, 10 (2012), 61-81.
doi: 10.1137/100798910. |
[11] |
T. S. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities, Phys. Rev. E, 80 (2009), 016105.
doi: 10.1103/PhysRevE.80.016105. |
[12] |
S. Fortunato, Community detection in graphs, Physics Reports, 486 (2010), 75-174, URL http://www.sciencedirect.com/science/article/pii/S0370157309002841.
doi: 10.1016/j.physrep.2009.11.002. |
[13] |
M. Girvan and M. Newman, Community structure in social and biological networks, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002), 7821-7826, URL http://www.scopus.com/inward/record.url?eid=2-s2.0-0037062448&partnerID=40&md5=11975daf89980be3e7f9b3ee3051796d, Cited By (since 1996)3239.
doi: 10.1073/pnas.122653799. |
[14] |
D. Jiang, M. Qian and M.-P. Quian, Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems, Springer, 2004.
doi: 10.1007/b94615. |
[15] |
S. L. Kalpazidou, Cycle Representations of Markov Processes, Springer, 2006. |
[16] |
Y. Kim, S.-W. Son and H. Jeong, Finding communities in directed networks, Phys. Rev. E, 81 (2010), 016103.
doi: 10.1103/PhysRevE.81.016103. |
[17] |
R. Lambiotte, J. C. Delvenne and M. Barahona, Laplacian dynamics and multiscale modular structure in networks, ArXiv. |
[18] |
A. Lancichinetti and S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities, Phys. Rev. E, 80 (2009), 016118.
doi: 10.1103/PhysRevE.80.016118. |
[19] |
A. Lancichinetti, F. Radicchi, J. J. Ramasco and S. Fortunato, Finding statistically significant communities in networks, PLoS ONE, 6 (2011), e18961,
doi: 10.1371/journal.pone.0018961. |
[20] |
E. A. Leicht and M. E. J. Newman, Community structure in directed networks, Phys. Rev. Lett., 100 (2008), 118703.
doi: 10.1103/PhysRevLett.100.118703. |
[21] |
T. Li, J. Liu and W. E, Probabilistic framework for network partition, Phys. Rev. E, 80 (2009), 026106.
doi: 10.1103/PhysRevE.80.026106. |
[22] |
F. D. Malliaros and M. Vazirgiannis, Clustering and community detection in directed networks: A survey, Physics Reports, 533 (2013), 95-142, URL http://www.sciencedirect.com/science/article/pii/S0370157313002822, Clustering and Community Detection in Directed Networks: A Survey.
doi: 10.1016/j.physrep.2013.08.002. |
[23] |
J. Mattingly, A. M. Stuart and D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerated noise, Stochastic Process Appl., 101 (2002), 185-232.
doi: 10.1016/S0304-4149(02)00150-3. |
[24] |
P. Metzner, C. Schütte and E. Vanden-Eijnden, Transition path theory for markov jump processes, Multiscale Modeling & Simulation, 7 (2008), 1192-1219.
doi: 10.1137/070699500. |
[25] |
M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256.
doi: 10.1137/S003614450342480. |
[26] |
M. E. J. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev. E, 69 (2004), 066133.
doi: 10.1103/PhysRevE.69.066133. |
[27] |
M. E. J. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, 103 (2006), 8577-8582.
doi: 10.1073/pnas.0601602103. |
[28] |
V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity of directed graphs with overlapping communities, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009), p03024.
doi: 10.1088/1742-5468/2009/03/P03024. |
[29] |
P. Pakoński, G. Tanner and K. .Zyczkowski, Families of line-graphs and their quantization, Journal of Statistical Physics, 111 (2003), 1331-1352.
doi: 10.1023/A:1023012502046. |
[30] |
G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435 (2005), 814-818.
doi: 10.1038/nature03607. |
[31] |
M. A. Porter, J.-P. Onnela and P. J. Mucha, Communities in networks, Notices of the American Mathematical Society, 56 (2009), 1082-1097. |
[32] |
H. Risken, The Fokker-Planck Equation, Springer, New York, 1996. 2nd edition. |
[33] |
M. Sarich, N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Modularity revisited: A novel dynamics-based concept for decomposing complex networks, Journal of Computational Dynamics, 1 (2014), 191-212.
doi: 10.3934/jcd.2014.1.191. |
[34] |
M. Sarich, F. Noé and C. Schütte, On the Approximation Quality of Markov State Models, Multiscale Modeling & Simulation, 8 (2010), 1154-1177.
doi: 10.1137/090764049. |
[35] |
M. Sarich, C. Schütte and E. Vanden-Eijnden, Optimal fuzzy aggregation of networks, Multiscale Modeling & Simulation, 8 (2010), 1535-1561.
doi: 10.1137/090758519. |
[36] |
M. T. Schaub, J.-C. Delvenne, S. N. Yaliraki and M. Barahona, Markov dynamics as a zooming lens for multiscale community detection: Non clique-like communities and the field-of-view limit, PLoS ONE, 7 (2012), e32210,
doi: 10.1371/journal.pone.0032210. |
[37] |
M. T. Schaub, R. Lambiotte and M. Barahona, Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation, Phys. Rev. E, 86 (2012), 026112.
doi: 10.1103/PhysRevE.86.026112. |
[38] |
J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Mod. Phys., 48 (1976), 571-585.
doi: 10.1103/RevModPhys.48.571. |
[39] |
Ch. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches, volume 24 of Courant Lecture Notes, American Mathematical Society, December 2013. |
[40] |
A. Viamontes Esquivel and M. Rosvall, Compression of flow can reveal overlapping-module organization in networks, Phys. Rev. X, 1 (2011), 021025.
doi: 10.1103/PhysRevX.1.021025. |
[41] |
R. K. P. Zia and B. Schmittmann, Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states, Journal of Statistical Mechanics-theory and Experiment, 2007 (2007), p07012.
doi: 10.1088/1742-5468/2007/07/P07012. |
show all references
References:
[1] |
B. Altaner, S. Grosskinsky, S. Herminghaus, L. Katthän, M. Timme and J. Vollmer, Network representations of nonequilibrium steady states: Cycle decompositions, symmetries, and dominant paths, Phys. Rev. E, 85 (2012), 041133, URL http://link.aps.org/doi/10.1103/PhysRevE.85.041133.
doi: 10.1103/PhysRevE.85.041133. |
[2] |
A. Arenas, J. Duch, A. Fernández and S. Gómez, Size reduction of complex networks preserving modularity, New Journal of Physics, 9 (2007), p176.
doi: 10.1088/1367-2630/9/6/176. |
[3] |
R. Banisch and N. D. Conrad, Cycle-flow based module detection in directed recurrence networks, EPL (Europhysics Letters), 108 (2014), 68008, URL http://stacks.iop.org/0295-5075/108/i=6/a=68008.
doi: 10.1209/0295-5075/108/68008. |
[4] |
A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 3747-3752, URL http://www.pnas.org/content/101/11/3747.abstract.
doi: 10.1073/pnas.0400087101. |
[5] |
G. R. Bowman and V. S. Pande and F. Noé, editors, An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, volume 797 of Advances in Experimental Medicine and Biology, Springer, 2014.
doi: 10.1007/978-94-007-7606-7_11. |
[6] |
J. Chen and B. Yuan, Detecting functional modules in the yeast protein-protein interaction network, Bioinformatics, 22 (2006), 2283-2290.
doi: 10.1093/bioinformatics/btl370. |
[7] |
D. Cvetkovic, P. Rowlinson and S. Simic, Spectral Generalizations of Line Graphs, Cambridge University Press, 2004, Cambridge Books Online.
doi: 10.1017/CBO9780511751752. |
[8] |
P. Deuflhard and M. Weber, Robust perron cluster analysis in conformation dynamics, Linear Algebra and its Applications, 398 (2005), 161-184, URL http://www.sciencedirect.com/science/article/pii/S0024379504004689, Special Issue on Matrices and Mathematical Biology.
doi: 10.1016/j.laa.2004.10.026. |
[9] |
N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Random walks on complex modular networks, Journal of Numerical Analysis, Industrial and Applied Mathematics, 6 (2011), 29-50. |
[10] |
N. Djurdjevac, M. Sarich and C. Schütte, Estimating the eigenvalue error of markov state models, Multiscale Modeling & Simulation, 10 (2012), 61-81.
doi: 10.1137/100798910. |
[11] |
T. S. Evans and R. Lambiotte, Line graphs, link partitions, and overlapping communities, Phys. Rev. E, 80 (2009), 016105.
doi: 10.1103/PhysRevE.80.016105. |
[12] |
S. Fortunato, Community detection in graphs, Physics Reports, 486 (2010), 75-174, URL http://www.sciencedirect.com/science/article/pii/S0370157309002841.
doi: 10.1016/j.physrep.2009.11.002. |
[13] |
M. Girvan and M. Newman, Community structure in social and biological networks, Proceedings of the National Academy of Sciences of the United States of America, 99 (2002), 7821-7826, URL http://www.scopus.com/inward/record.url?eid=2-s2.0-0037062448&partnerID=40&md5=11975daf89980be3e7f9b3ee3051796d, Cited By (since 1996)3239.
doi: 10.1073/pnas.122653799. |
[14] |
D. Jiang, M. Qian and M.-P. Quian, Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems, Springer, 2004.
doi: 10.1007/b94615. |
[15] |
S. L. Kalpazidou, Cycle Representations of Markov Processes, Springer, 2006. |
[16] |
Y. Kim, S.-W. Son and H. Jeong, Finding communities in directed networks, Phys. Rev. E, 81 (2010), 016103.
doi: 10.1103/PhysRevE.81.016103. |
[17] |
R. Lambiotte, J. C. Delvenne and M. Barahona, Laplacian dynamics and multiscale modular structure in networks, ArXiv. |
[18] |
A. Lancichinetti and S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities, Phys. Rev. E, 80 (2009), 016118.
doi: 10.1103/PhysRevE.80.016118. |
[19] |
A. Lancichinetti, F. Radicchi, J. J. Ramasco and S. Fortunato, Finding statistically significant communities in networks, PLoS ONE, 6 (2011), e18961,
doi: 10.1371/journal.pone.0018961. |
[20] |
E. A. Leicht and M. E. J. Newman, Community structure in directed networks, Phys. Rev. Lett., 100 (2008), 118703.
doi: 10.1103/PhysRevLett.100.118703. |
[21] |
T. Li, J. Liu and W. E, Probabilistic framework for network partition, Phys. Rev. E, 80 (2009), 026106.
doi: 10.1103/PhysRevE.80.026106. |
[22] |
F. D. Malliaros and M. Vazirgiannis, Clustering and community detection in directed networks: A survey, Physics Reports, 533 (2013), 95-142, URL http://www.sciencedirect.com/science/article/pii/S0370157313002822, Clustering and Community Detection in Directed Networks: A Survey.
doi: 10.1016/j.physrep.2013.08.002. |
[23] |
J. Mattingly, A. M. Stuart and D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerated noise, Stochastic Process Appl., 101 (2002), 185-232.
doi: 10.1016/S0304-4149(02)00150-3. |
[24] |
P. Metzner, C. Schütte and E. Vanden-Eijnden, Transition path theory for markov jump processes, Multiscale Modeling & Simulation, 7 (2008), 1192-1219.
doi: 10.1137/070699500. |
[25] |
M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256.
doi: 10.1137/S003614450342480. |
[26] |
M. E. J. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev. E, 69 (2004), 066133.
doi: 10.1103/PhysRevE.69.066133. |
[27] |
M. E. J. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, 103 (2006), 8577-8582.
doi: 10.1073/pnas.0601602103. |
[28] |
V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity of directed graphs with overlapping communities, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009), p03024.
doi: 10.1088/1742-5468/2009/03/P03024. |
[29] |
P. Pakoński, G. Tanner and K. .Zyczkowski, Families of line-graphs and their quantization, Journal of Statistical Physics, 111 (2003), 1331-1352.
doi: 10.1023/A:1023012502046. |
[30] |
G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435 (2005), 814-818.
doi: 10.1038/nature03607. |
[31] |
M. A. Porter, J.-P. Onnela and P. J. Mucha, Communities in networks, Notices of the American Mathematical Society, 56 (2009), 1082-1097. |
[32] |
H. Risken, The Fokker-Planck Equation, Springer, New York, 1996. 2nd edition. |
[33] |
M. Sarich, N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schütte, Modularity revisited: A novel dynamics-based concept for decomposing complex networks, Journal of Computational Dynamics, 1 (2014), 191-212.
doi: 10.3934/jcd.2014.1.191. |
[34] |
M. Sarich, F. Noé and C. Schütte, On the Approximation Quality of Markov State Models, Multiscale Modeling & Simulation, 8 (2010), 1154-1177.
doi: 10.1137/090764049. |
[35] |
M. Sarich, C. Schütte and E. Vanden-Eijnden, Optimal fuzzy aggregation of networks, Multiscale Modeling & Simulation, 8 (2010), 1535-1561.
doi: 10.1137/090758519. |
[36] |
M. T. Schaub, J.-C. Delvenne, S. N. Yaliraki and M. Barahona, Markov dynamics as a zooming lens for multiscale community detection: Non clique-like communities and the field-of-view limit, PLoS ONE, 7 (2012), e32210,
doi: 10.1371/journal.pone.0032210. |
[37] |
M. T. Schaub, R. Lambiotte and M. Barahona, Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation, Phys. Rev. E, 86 (2012), 026112.
doi: 10.1103/PhysRevE.86.026112. |
[38] |
J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Mod. Phys., 48 (1976), 571-585.
doi: 10.1103/RevModPhys.48.571. |
[39] |
Ch. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches, volume 24 of Courant Lecture Notes, American Mathematical Society, December 2013. |
[40] |
A. Viamontes Esquivel and M. Rosvall, Compression of flow can reveal overlapping-module organization in networks, Phys. Rev. X, 1 (2011), 021025.
doi: 10.1103/PhysRevX.1.021025. |
[41] |
R. K. P. Zia and B. Schmittmann, Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states, Journal of Statistical Mechanics-theory and Experiment, 2007 (2007), p07012.
doi: 10.1088/1742-5468/2007/07/P07012. |
[1] |
Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593 |
[2] |
Hirotada Honda. On a model of target detection in molecular communication networks. Networks and Heterogeneous Media, 2019, 14 (4) : 633-657. doi: 10.3934/nhm.2019025 |
[3] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[4] |
Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks. Mathematical Biosciences & Engineering, 2004, 1 (2) : 347-359. doi: 10.3934/mbe.2004.1.347 |
[5] |
Michael Gekhtman, Michael Shapiro, Serge Tabachnikov, Alek Vainshtein. Higher pentagram maps, weighted directed networks, and cluster dynamics. Electronic Research Announcements, 2012, 19: 1-17. doi: 10.3934/era.2012.19.1 |
[6] |
Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance. Structural properties of the line-graphs associated to directed networks. Networks and Heterogeneous Media, 2012, 7 (3) : 373-384. doi: 10.3934/nhm.2012.7.373 |
[7] |
Zari Dzalilov, Iradj Ouveysi, Tolga Bektaş. An extended lifetime measure for telecommunications networks: Improvements and implementations. Journal of Industrial and Management Optimization, 2012, 8 (3) : 639-649. doi: 10.3934/jimo.2012.8.639 |
[8] |
Leah Anderson, Thomas Pumir, Dimitrios Triantafyllos, Alexandre M. Bayen. Stability and implementation of a cycle-based max pressure controller for signalized traffic networks. Networks and Heterogeneous Media, 2018, 13 (2) : 241-260. doi: 10.3934/nhm.2018011 |
[9] |
Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 |
[10] |
Mauro Garavello, Paola Goatin. The Cauchy problem at a node with buffer. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1915-1938. doi: 10.3934/dcds.2012.32.1915 |
[11] |
Ali Aytekin, Kadir Emir. Colimits of crossed modules in modified categories of interest. Electronic Research Archive, 2020, 28 (3) : 1227-1238. doi: 10.3934/era.2020067 |
[12] |
Chun-Gil Park. Stability of a linear functional equation in Banach modules. Conference Publications, 2003, 2003 (Special) : 694-700. doi: 10.3934/proc.2003.2003.694 |
[13] |
Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 |
[14] |
Dmitry N. Kozlov. Cobounding odd cycle colorings. Electronic Research Announcements, 2006, 12: 53-55. |
[15] |
Luca Schenato, Sandro Zampieri. On rendezvous control with randomly switching communication graphs. Networks and Heterogeneous Media, 2007, 2 (4) : 627-646. doi: 10.3934/nhm.2007.2.627 |
[16] |
Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082 |
[17] |
Lizhong Peng, Shujun Dang, Bojin Zhuang. Localization operator and digital communication capacity of channel. Communications on Pure and Applied Analysis, 2007, 6 (3) : 819-827. doi: 10.3934/cpaa.2007.6.819 |
[18] |
Jesus R. Artalejo, Tuan Phung-Duc. Markovian retrial queues with two way communication. Journal of Industrial and Management Optimization, 2012, 8 (4) : 781-806. doi: 10.3934/jimo.2012.8.781 |
[19] |
Matthias Kunzer. A one-box-shift morphism between Specht modules. Electronic Research Announcements, 2000, 6: 90-94. |
[20] |
Johannes Huebschmann. On the history of Lie brackets, crossed modules, and Lie-Rinehart algebras. Journal of Geometric Mechanics, 2021, 13 (3) : 385-402. doi: 10.3934/jgm.2021009 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]