
Previous Article
Global stability of equilibria in a tickborne disease model
 MBE Home
 This Issue

Next Article
On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China
Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes
1.  Department of Statistics and O.R., Faculty of Mathematics, Complutense University of Madrid, Madrid 28040, Spain 
2.  Department of Mathematics, University of Athens, Panepistemiopolis, Athens 15784, Greece 
3.  School of Statistics, Complutense University of Madrid, Madrid 28040, Spain 
[1] 
Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a sizestructured population model. Discrete & Continuous Dynamical Systems  B, 2017, 22 (3) : 831840. doi: 10.3934/dcdsb.2017041 
[2] 
Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems  A, 2013, 33 (10) : 46274646. doi: 10.3934/dcds.2013.33.4627 
[3] 
Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete & Continuous Dynamical Systems  B, 2006, 6 (5) : 10511076. doi: 10.3934/dcdsb.2006.6.1051 
[4] 
Tristan Roget. On the longtime behaviour of age and trait structured population dynamics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 25512576. doi: 10.3934/dcdsb.2018265 
[5] 
Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuoustime capturerecapture population estimation model. Discrete & Continuous Dynamical Systems  B, 2005, 5 (4) : 10571075. doi: 10.3934/dcdsb.2005.5.1057 
[6] 
Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discretetime sizestructured chemostat model with inhibitory kinetics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (7) : 34393451. doi: 10.3934/dcdsb.2018327 
[7] 
Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265271. doi: 10.3934/proc.2011.2011.265 
[8] 
Yoshikazu Giga, Robert V. Kohn. Scaleinvariant extinction time estimates for some singular diffusion equations. Discrete & Continuous Dynamical Systems  A, 2011, 30 (2) : 509535. doi: 10.3934/dcds.2011.30.509 
[9] 
Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations & Control Theory, 2019, 8 (4) : 867882. doi: 10.3934/eect.2019042 
[10] 
Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete & Continuous Dynamical Systems  A, 2008, 20 (4) : 10391056. doi: 10.3934/dcds.2008.20.1039 
[11] 
Bradley G. Wagner, Brian J. Coburn, Sally Blower. Increasing survival time decreases the costeffectiveness of using "test & treat'' to eliminate HIV epidemics. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 16731686. doi: 10.3934/mbe.2013.10.1673 
[12] 
Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistencetime estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems  B, 2015, 20 (9) : 29332947. doi: 10.3934/dcdsb.2015.20.2933 
[13] 
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195215. doi: 10.3934/mcrf.2012.2.195 
[14] 
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discretetime, sizestructured chemostat model. Discrete & Continuous Dynamical Systems  B, 2001, 1 (2) : 183191. doi: 10.3934/dcdsb.2001.1.183 
[15] 
Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finitetime dynamics. Discrete & Continuous Dynamical Systems  B, 2008, 9 (3&4, May) : 463492. doi: 10.3934/dcdsb.2008.9.463 
[16] 
Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 10771098. doi: 10.3934/mbe.2018048 
[17] 
Xianlong Fu, Dongmei Zhu. Stability results for a sizestructured population model with delayed birth process. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 109131. doi: 10.3934/dcdsb.2013.18.109 
[18] 
S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete & Continuous Dynamical Systems  A, 2000, 6 (4) : 841860. doi: 10.3934/dcds.2000.6.841 
[19] 
Xia Wang, Shengqiang Liu, Libin Rong. Permanence and extinction of a nonautonomous HIV1 model with time delays. Discrete & Continuous Dynamical Systems  B, 2014, 19 (6) : 17831800. doi: 10.3934/dcdsb.2014.19.1783 
[20] 
Tung Nguyen, Nar Rawal. Coexistence and extinction in TimePeriodic VolterraLotka type systems with nonlocal dispersal. Discrete & Continuous Dynamical Systems  B, 2018, 23 (9) : 37993816. doi: 10.3934/dcdsb.2018080 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]