
Previous Article
Boundedness and blowup solutions for quasilinear parabolic systems with lower order terms
 CPAA Home
 This Issue

Next Article
Nodal solutions to critical growth elliptic problems under Steklov boundary conditions
On the time evolution of Wigner measures for Schrödinger equations
1.  Université Montpellier 2, Mathématiques, CC051, 34095 Montpellier, CNRS, UMR 5149, 34095 Montpellier, France 
2.  LAMA UMR CNRS 8050, Université Paris EST, 61, avenue du Général de Gaulle 94010 Créteil Cedex, France 
3.  Wolfgang Pauli Institute c/o Fak. f. Mathematik, Univ. Wien, Nordbergstr. 15, A1090 Wien, Austria, Austria 
[1] 
InJee Jeong, Benoit Pausader. Discrete Schrödinger equation and illposedness for the Euler equation. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 281293. doi: 10.3934/dcds.2017012 
[2] 
Lihui Chai, Shi Jin, Qin Li. Semiclassical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic & Related Models, 2013, 6 (3) : 505532. doi: 10.3934/krm.2013.6.505 
[3] 
Tsukasa Iwabuchi, Kota Uriya. Illposedness for the quadratic nonlinear Schrödinger equation with nonlinearity $u^2$. Communications on Pure & Applied Analysis, 2015, 14 (4) : 13951405. doi: 10.3934/cpaa.2015.14.1395 
[4] 
Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 56895709. doi: 10.3934/dcds.2015.35.5689 
[5] 
Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Wellposedness and illposedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 28632880. doi: 10.3934/dcds.2015.35.2863 
[6] 
Mahendra Panthee. On the illposedness result for the BBM equation. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 253259. doi: 10.3934/dcds.2011.30.253 
[7] 
Xavier Carvajal, Mahendra Panthee. On illposedness for the generalized BBM equation. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 45654576. doi: 10.3934/dcds.2014.34.4565 
[8] 
Piero D'Ancona, Mamoru Okamoto. Blowup and illposedness results for a Dirac equation without gauge invariance. Evolution Equations & Control Theory, 2016, 5 (2) : 225234. doi: 10.3934/eect.2016002 
[9] 
Adán J. Corcho. IllPosedness for the Benney system. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 965972. doi: 10.3934/dcds.2006.15.965 
[10] 
G. Fonseca, G. RodríguezBlanco, W. Sandoval. Wellposedness and illposedness results for the regularized BenjaminOno equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 13271341. doi: 10.3934/cpaa.2015.14.1327 
[11] 
Yannis Angelopoulos. Wellposedness and illposedness results for the NovikovVeselov equation. Communications on Pure & Applied Analysis, 2016, 15 (3) : 727760. doi: 10.3934/cpaa.2016.15.727 
[12] 
Claude Bardos, Nicolas Besse. The Cauchy problem for the VlasovDiracBenney equation and related issues in fluid mechanics and semiclassical limits. Kinetic & Related Models, 2013, 6 (4) : 893917. doi: 10.3934/krm.2013.6.893 
[13] 
Yuanhong Wei, Yong Li, Xue Yang. On concentration of semiclassical solitary waves for a generalized KadomtsevPetviashvili equation. Discrete & Continuous Dynamical Systems  S, 2017, 10 (5) : 10951106. doi: 10.3934/dcdss.2017059 
[14] 
Marcel Braukhoff. Semiconductor BoltzmannDiracBenney equation with a BGKtype collision operator: Existence of solutions vs. illposedness. Kinetic & Related Models, 2019, 12 (2) : 445482. doi: 10.3934/krm.2019019 
[15] 
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local wellposedness and illposedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 26992723. doi: 10.3934/dcds.2020382 
[16] 
Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semiclassical solutions to nonlinear Dirac equations of spacedimension $ n $. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 41054123. doi: 10.3934/dcds.2021030 
[17] 
Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes illposedness in truncated series models of water waves. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 31233147. doi: 10.3934/dcds.2019129 
[18] 
JeanFrançois Crouzet. 3D coded aperture imaging, illposedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341353. doi: 10.3934/ipi.2011.5.341 
[19] 
Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Illposedness and regularization. Inverse Problems & Imaging, 2015, 9 (2) : 395413. doi: 10.3934/ipi.2015.9.395 
[20] 
Igor Chueshov, Alexey Shcherbina. Semiweak wellposedness and attractors for 2D SchrödingerBoussinesq equations. Evolution Equations & Control Theory, 2012, 1 (1) : 5780. doi: 10.3934/eect.2012.1.57 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]