 Previous Article
 MBE Home
 This Issue

Next Article
An extension of the formula for spreading speeds
Models for the spread and persistence of hantavirus infection in rodents with direct and indirect transmission
1.  Louisiana State University in Shreveport, Department of Mathematics, Shreveport, LA 71115, United States 
2.  Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 794091042, United States 
3.  Université Victor Segalen Bordeaux 2, IMB UMR CNRS 5251 & INRIA Bordeaux Sud Ouest projet Anubis, case 36, UFR Sciences et Modelisation, 3 ter place de la Victoire, 33076 Bordeaux Cedex, France 
[1] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[2] 
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems  B, 2019, 24 (12) : 67716782. doi: 10.3934/dcdsb.2019166 
[3] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[4] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[5] 
Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541547. doi: 10.3934/cpaa.2007.6.541 
[6] 
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239259. doi: 10.3934/mbe.2009.6.239 
[7] 
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reactiondiffusion epidemic model. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021170 
[8] 
Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 585606. doi: 10.3934/dcds.2019024 
[9] 
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457470. doi: 10.3934/mbe.2007.4.457 
[10] 
Ling Xue, Caterina Scoglio. Networklevel reproduction number and extinction threshold for vectorborne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565584. doi: 10.3934/mbe.2015.12.565 
[11] 
Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous LotkaVolterra predatorprey model with time delays. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 823831. doi: 10.3934/dcdsb.2004.4.823 
[12] 
Meng Fan, Qian Wang. Periodic solutions of a class of nonautonomous discrete time semiratiodependent predatorprey systems. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 563574. doi: 10.3934/dcdsb.2004.4.563 
[13] 
Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predatorprey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 653662. doi: 10.3934/dcdsb.2004.4.653 
[14] 
Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 937961. doi: 10.3934/cpaa.2011.10.937 
[15] 
Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 60316068. doi: 10.3934/dcds.2015.35.6031 
[16] 
Arno Berger. Counting uniformly attracting solutions of nonautonomous differential equations. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 1525. doi: 10.3934/dcdss.2008.1.15 
[17] 
Xiao Tang, Yingying Zeng, Weinian Zhang. Interval homeomorphic solutions of a functional equation of nonautonomous iterations. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 69676984. doi: 10.3934/dcds.2020214 
[18] 
Luís Silva. Periodic attractors of nonautonomous flattopped tent systems. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 18671874. doi: 10.3934/dcdsb.2018243 
[19] 
João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 465482. doi: 10.3934/dcds.2013.33.465 
[20] 
Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasiperiodic bubbles. Discrete & Continuous Dynamical Systems, 2003, 9 (1) : 209224. doi: 10.3934/dcds.2003.9.209 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]