-
Previous Article
The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift
- NHM Home
- This Issue
-
Next Article
Coupling conditions for the $3\times 3$ Euler system
Classical solutions and feedback stabilization for the gas flow in a sequence of pipes
1. | Lehrstuhl 2 für Angewandte Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen, Germany, Germany |
References:
[1] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.
|
[2] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.
|
[3] |
J. F. Bonnans and J. André, "Optimal Structure of Gas Transmission Trunklines,", Research Report available at Centre de recherche INRIA Saclay, (2009). Google Scholar |
[4] |
R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032.
doi: 10.1137/080716372. |
[5] |
R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605.
doi: 10.1137/070690298. |
[6] |
J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2.
doi: 10.1109/TAC.2006.887903. |
[7] |
M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9.
|
[8] |
M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., (2009). Google Scholar |
[9] |
M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299.
doi: 10.3934/nhm.2010.5.299. |
[10] |
M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845.
|
[11] |
M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 731.
|
[12] |
G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals,, SIAM J. Control Optim., 41 (2002), 164.
doi: 10.1137/S0363012900375664. |
[13] |
T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243.
doi: 10.3934/dcds.2010.28.243. |
[14] |
, Nord Stream AG,, www.nord-stream.com, (). Google Scholar |
[15] |
A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987). Google Scholar |
[16] |
A. Osiadacz and M. Chaczykowski, "Comparison of Isothermal and Non-Isothermal Transient Models,", Technical Report available at Warsaw University of Technology, (1998). Google Scholar |
[17] |
A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41.
doi: 10.1016/S1385-8947(00)00194-7. |
[18] |
, Pipeline Simulation Interest Group,, www.psig.org, (). Google Scholar |
[19] |
E. Sletfjerding and J. S. Gudmundsson, Friction factor in high pressure natural gas pipelines from roughness measurements,, International Gas Research Conference, (2001), 5. Google Scholar |
[20] |
M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345.
doi: 10.1016/j.cam.2006.04.018. |
[21] |
Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chin. Ann. Math. Ser. B, 27 (2006), 643.
doi: 10.1007/s11401-005-0520-2. |
show all references
References:
[1] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.
|
[2] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.
|
[3] |
J. F. Bonnans and J. André, "Optimal Structure of Gas Transmission Trunklines,", Research Report available at Centre de recherche INRIA Saclay, (2009). Google Scholar |
[4] |
R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032.
doi: 10.1137/080716372. |
[5] |
R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605.
doi: 10.1137/070690298. |
[6] |
J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2.
doi: 10.1109/TAC.2006.887903. |
[7] |
M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9.
|
[8] |
M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., (2009). Google Scholar |
[9] |
M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299.
doi: 10.3934/nhm.2010.5.299. |
[10] |
M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845.
|
[11] |
M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 731.
|
[12] |
G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals,, SIAM J. Control Optim., 41 (2002), 164.
doi: 10.1137/S0363012900375664. |
[13] |
T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243.
doi: 10.3934/dcds.2010.28.243. |
[14] |
, Nord Stream AG,, www.nord-stream.com, (). Google Scholar |
[15] |
A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987). Google Scholar |
[16] |
A. Osiadacz and M. Chaczykowski, "Comparison of Isothermal and Non-Isothermal Transient Models,", Technical Report available at Warsaw University of Technology, (1998). Google Scholar |
[17] |
A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41.
doi: 10.1016/S1385-8947(00)00194-7. |
[18] |
, Pipeline Simulation Interest Group,, www.psig.org, (). Google Scholar |
[19] |
E. Sletfjerding and J. S. Gudmundsson, Friction factor in high pressure natural gas pipelines from roughness measurements,, International Gas Research Conference, (2001), 5. Google Scholar |
[20] |
M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345.
doi: 10.1016/j.cam.2006.04.018. |
[21] |
Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chin. Ann. Math. Ser. B, 27 (2006), 643.
doi: 10.1007/s11401-005-0520-2. |
[1] |
Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091 |
[2] |
Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41 |
[3] |
Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks. Networks & Heterogeneous Media, 2015, 10 (2) : 295-320. doi: 10.3934/nhm.2015.10.295 |
[4] |
Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks & Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733 |
[5] |
Uwe Helmke, Michael Schönlein. Minimum sensitivity realizations of networks of linear systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 241-262. doi: 10.3934/naco.2016010 |
[6] |
Ahmadreza Argha, Steven W. Su, Lin Ye, Branko G. Celler. Optimal sparse output feedback for networked systems with parametric uncertainties. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 283-295. doi: 10.3934/naco.2019019 |
[7] |
Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks & Heterogeneous Media, 2007, 2 (1) : 81-97. doi: 10.3934/nhm.2007.2.81 |
[8] |
Fabian Rüffler, Volker Mehrmann, Falk M. Hante. Optimal model switching for gas flow in pipe networks. Networks & Heterogeneous Media, 2018, 13 (4) : 641-661. doi: 10.3934/nhm.2018029 |
[9] |
Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759 |
[10] |
Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751 |
[11] |
Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078 |
[12] |
Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure & Applied Analysis, 2017, 16 (1) : 295-310. doi: 10.3934/cpaa.2017014 |
[13] |
Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871 |
[14] |
Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295 |
[15] |
Yogiraj Mantri, Michael Herty, Sebastian Noelle. Well-balanced scheme for gas-flow in pipeline networks. Networks & Heterogeneous Media, 2019, 14 (4) : 659-676. doi: 10.3934/nhm.2019026 |
[16] |
João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks & Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223 |
[17] |
Francesca R. Guarguaglini. Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1057-1087. doi: 10.3934/cpaa.2020049 |
[18] |
Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739 |
[19] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[20] |
Oskar Weinberger, Peter Ashwin. From coupled networks of systems to networks of states in phase space. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 2021-2041. doi: 10.3934/dcdsb.2018193 |
2018 Impact Factor: 0.871
Tools
Metrics
Other articles
by authors
[Back to Top]