# American Institute of Mathematical Sciences

August  2011, 4(4): 907-922. doi: 10.3934/dcdss.2011.4.907

## An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent

 1 Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

Received  September 2009 Revised  January 2010 Published  November 2010

We consider the eigenvalue problem

$-\Delta v = \lambda ( c_0 p u^{p-1}_\varepsilon + \varepsilon) v$ in $\Omega,$

$v = 0$ on $\partial\Omega,$

$|| v ||_{L^\infty(\Omega)} = 1$

where $\Omega \subset R^N (N \ge 5)$ is a smooth bounded domain, $c_0 = N(N-2)$, $p = (N+2)/(N-2)$ is the critical Sobolev exponent and $\varepsilon >0$ is a small parameter. Here $u_\varepsilon$ is a positive solution of

$-\Delta u = c_0 u^p + \varepsilon u$ in $\Omega, \quad u|_{\partial \Omega} = 0$

with the property that

$\frac{\int_\Omega |\nabla u_\varepsilon |^2 dx} {( \int_\Omega |u_\varepsilon |^{p+1} dx )^{\frac{2}{p+1}}} \to S_N$ as $\varepsilon\to 0,$

where $S_N$ is the best constant for the Sobolev inequality. In this paper, we show several asymptotic estimates for the eigenvalues $\lambda_{i, \varepsilon}$ and corresponding eigenfunctions $v_{i,\varepsilon}$ for $i=1, 2, \cdots, N+1, N+2$.

Citation: Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907
##### References:
 [1] G. Bianchi and H. Egnell, A note on the Sobolev inequality,, J. Funct. Anal., 100 (1991), 18.  doi: doi:10.1016/0022-1236(91)90099-Q.  Google Scholar [2] K. Cerqueti, A uniqueness result for a semilinear elliptic equation involving the critical Sobolev exponent in symmetric domains,, Asymptotic Anal., 21 (1999), 99.   Google Scholar [3] M. Grossi and F. Pacella, On an eigenvalue problem related to the critical exponent,, Math. Z., 250 (2005), 225.  doi: doi:10.1007/s00209-004-0755-8.  Google Scholar [4] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent,, Ann. Inst. Henri Poincar\'e, 8 (1991), 159.   Google Scholar [5] O. Rey, Proof of two conjectures of H. Brezis and L. A. Peletier,, Manuscripta Math., 65 (1989), 19.  doi: doi:10.1007/BF01168364.  Google Scholar [6] F. Takahashi, Asymptotic nondegeneracy of least energy solutions to an elliptic problem with critical Sobolev exponent,, Advanced Nonlin. Stud., 8 (2008), 783.   Google Scholar

show all references

##### References:
 [1] G. Bianchi and H. Egnell, A note on the Sobolev inequality,, J. Funct. Anal., 100 (1991), 18.  doi: doi:10.1016/0022-1236(91)90099-Q.  Google Scholar [2] K. Cerqueti, A uniqueness result for a semilinear elliptic equation involving the critical Sobolev exponent in symmetric domains,, Asymptotic Anal., 21 (1999), 99.   Google Scholar [3] M. Grossi and F. Pacella, On an eigenvalue problem related to the critical exponent,, Math. Z., 250 (2005), 225.  doi: doi:10.1007/s00209-004-0755-8.  Google Scholar [4] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent,, Ann. Inst. Henri Poincar\'e, 8 (1991), 159.   Google Scholar [5] O. Rey, Proof of two conjectures of H. Brezis and L. A. Peletier,, Manuscripta Math., 65 (1989), 19.  doi: doi:10.1007/BF01168364.  Google Scholar [6] F. Takahashi, Asymptotic nondegeneracy of least energy solutions to an elliptic problem with critical Sobolev exponent,, Advanced Nonlin. Stud., 8 (2008), 783.   Google Scholar
 [1] Naoyuki Ishimura, Shin'ya Matsui. On blowing-up solutions of the Blasius equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 985-992. doi: 10.3934/dcds.2003.9.985 [2] Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729 [3] Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47 [4] Shaodong Wang. Infinitely many blowing-up solutions for Yamabe-type problems on manifolds with boundary. Communications on Pure & Applied Analysis, 2018, 17 (1) : 209-230. doi: 10.3934/cpaa.2018013 [5] Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 [6] Bernard Brighi, Tewfik Sari. Blowing-up coordinates for a similarity boundary layer equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 929-948. doi: 10.3934/dcds.2005.12.929 [7] M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233 [8] Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527 [9] Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 [10] Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991 [11] Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357 [12] Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707 [13] Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231 [14] Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 [15] Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567 [16] Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033 [17] Y. Kabeya. Behaviors of solutions to a scalar-field equation involving the critical Sobolev exponent with the Robin condition. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 117-134. doi: 10.3934/dcds.2006.14.117 [18] Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557 [19] Jong-Shenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 161-177. doi: 10.3934/cpaa.2011.10.161 [20] Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

2018 Impact Factor: 0.545