# American Institute of Mathematical Sciences

October  2011, 29(4): 1393-1404. doi: 10.3934/dcds.2011.29.1393

## Asymptotic behaviour of a porous medium equation with fractional diffusion

 1 Department of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, TX 78712-1082 2 Departamento de Matemáticas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid

Received  March 2010 Revised  August 2010 Published  December 2010

We consider a porous medium equation with a nonlocal diffusion effect given by an inverse fractional Laplacian operator. The equation is posed in the whole space $\mathbb{R}^n$. In a previous paper we have found mass-preserving, nonnegative weak solutions of the equation satisfying energy estimates. Here we establish the large-time behaviour. We first find selfsimilar nonnegative solutions by solving an elliptic obstacle problem for the pair pressure-density involving the Laplacian, obtaining what we call obstacle Barenblatt solutions. The theory for elliptic fractional problems with obstacles has been recently established. We then use entropy methods to show that the asymptotic behavior of general finite-mass solutions is described after renormalization by these special solutions, which represent a surprising variation of the Barenblatt profiles of the standard porous medium model.
Citation: Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393
##### References:
 [1] I. Athanasopoulos, L. A. Caffarelli and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems,, Amer. J. Math., 130 (2008), 485. doi: 10.1353/ajm.2008.0016. Google Scholar [2] G. I. Barenblatt, On self-similar motions of a compressible fluid in a porous medium (Russian),, Akad. Nauk SSSR. Prikl. Mat. Meh., 16 (1952), 679. Google Scholar [3] P. Biler, C. Imbert and G. Karch, Fractal porous medium equation,, preprint., (). Google Scholar [4] P. Biler, G. Karch and R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions,, Comm. Math. Phys., 294 (2010), 145. doi: 10.1007/s00220-009-0855-8. Google Scholar [5] L. A. Caffarelli, The obstacle problem revisited,, The Journal of Fourier Analysis and Applications, 4 (1998), 383. doi: 10.1007/BF02498216. Google Scholar [6] L. A. Caffarelli, Further regularity for the Signorini problem,, Comm. Partial Differential Equations, 4 (1979), 1067. doi: 10.1080/03605307908820119. Google Scholar [7] L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425. doi: 10.1007/s00222-007-0086-6. Google Scholar [8] L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Diff. Eqns., 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar [9] L. A. Caffarelli, F. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow,, in preparation., (). Google Scholar [10] L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903. doi: 10.4007/annals.2010.171.1903. Google Scholar [11] L. A. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with fractional potential pressure,, \arXiv{1001.0410}., (). Google Scholar [12] J. A. Carrillo and G. Toscani, Asymptotic $L^1$-decay of solutions of the porous medium equation to self-similarity,, Indiana Univ. Math. J., 49 (2000), 113. doi: 10.1512/iumj.2000.49.1756. Google Scholar [13] J. A. Carrillo, A. Jngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1. doi: 10.1007/s006050170032. Google Scholar [14] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions,, J. Math. Pures Appl., 81 (2002), 847. doi: 10.1016/S0021-7824(02)01266-7. Google Scholar [15] A. Friedman, "Variational Principles and Free Boundary Problems,", Wiley, (1982). Google Scholar [16] A. Friedman and S. Kamin, The asymptotic behavior of gas in an $N$-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551. Google Scholar [17] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Classics in Mathematics, (2001). Google Scholar [18] A. K. Head, Dislocation group dynamics II. Similarity solutions of the continuum approximation,, Phil. Mag., 26 (1972), 65. doi: 10.1080/14786437208221020. Google Scholar [19] N. S. Landkof, "Foundations Of Modern Potential Theory,", Die Grundlehren der mathematischen Wissenschaften, (1972). Google Scholar [20] L. E. Silvestre, Hölder estimates for solutions of integro differential equations like the fractional Laplace,, Indiana Univ. Math. J., 55 (2006), 1155. doi: 10.1512/iumj.2006.55.2706. Google Scholar [21] E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970). Google Scholar [22] J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs, (2007). Google Scholar [23] J. L. Vázquez, "Smoothing And Decay Estimates For Nonlinear Diffusion Equations. Equations Of Porous Medium Type,", Oxford Lecture Series in Mathematics and its Applications, 33 (2006). Google Scholar

show all references

##### References:
 [1] I. Athanasopoulos, L. A. Caffarelli and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems,, Amer. J. Math., 130 (2008), 485. doi: 10.1353/ajm.2008.0016. Google Scholar [2] G. I. Barenblatt, On self-similar motions of a compressible fluid in a porous medium (Russian),, Akad. Nauk SSSR. Prikl. Mat. Meh., 16 (1952), 679. Google Scholar [3] P. Biler, C. Imbert and G. Karch, Fractal porous medium equation,, preprint., (). Google Scholar [4] P. Biler, G. Karch and R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions,, Comm. Math. Phys., 294 (2010), 145. doi: 10.1007/s00220-009-0855-8. Google Scholar [5] L. A. Caffarelli, The obstacle problem revisited,, The Journal of Fourier Analysis and Applications, 4 (1998), 383. doi: 10.1007/BF02498216. Google Scholar [6] L. A. Caffarelli, Further regularity for the Signorini problem,, Comm. Partial Differential Equations, 4 (1979), 1067. doi: 10.1080/03605307908820119. Google Scholar [7] L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425. doi: 10.1007/s00222-007-0086-6. Google Scholar [8] L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Diff. Eqns., 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar [9] L. A. Caffarelli, F. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow,, in preparation., (). Google Scholar [10] L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903. doi: 10.4007/annals.2010.171.1903. Google Scholar [11] L. A. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with fractional potential pressure,, \arXiv{1001.0410}., (). Google Scholar [12] J. A. Carrillo and G. Toscani, Asymptotic $L^1$-decay of solutions of the porous medium equation to self-similarity,, Indiana Univ. Math. J., 49 (2000), 113. doi: 10.1512/iumj.2000.49.1756. Google Scholar [13] J. A. Carrillo, A. Jngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatsh. Math., 133 (2001), 1. doi: 10.1007/s006050170032. Google Scholar [14] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions,, J. Math. Pures Appl., 81 (2002), 847. doi: 10.1016/S0021-7824(02)01266-7. Google Scholar [15] A. Friedman, "Variational Principles and Free Boundary Problems,", Wiley, (1982). Google Scholar [16] A. Friedman and S. Kamin, The asymptotic behavior of gas in an $N$-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551. Google Scholar [17] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Classics in Mathematics, (2001). Google Scholar [18] A. K. Head, Dislocation group dynamics II. Similarity solutions of the continuum approximation,, Phil. Mag., 26 (1972), 65. doi: 10.1080/14786437208221020. Google Scholar [19] N. S. Landkof, "Foundations Of Modern Potential Theory,", Die Grundlehren der mathematischen Wissenschaften, (1972). Google Scholar [20] L. E. Silvestre, Hölder estimates for solutions of integro differential equations like the fractional Laplace,, Indiana Univ. Math. J., 55 (2006), 1155. doi: 10.1512/iumj.2006.55.2706. Google Scholar [21] E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970). Google Scholar [22] J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs, (2007). Google Scholar [23] J. L. Vázquez, "Smoothing And Decay Estimates For Nonlinear Diffusion Equations. Equations Of Porous Medium Type,", Oxford Lecture Series in Mathematics and its Applications, 33 (2006). Google Scholar
 [1] Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123 [2] Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927 [3] Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011 [4] Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337 [5] Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725 [6] Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 [7] Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1 [8] María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001 [9] Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783 [10] Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure & Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623 [11] Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761 [12] Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183 [13] Zhilei Liang. On the critical exponents for porous medium equation with a localized reaction in high dimensions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 649-658. doi: 10.3934/cpaa.2012.11.649 [14] Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905 [15] Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 377-387. doi: 10.3934/dcdss.2020021 [16] Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111 [17] Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525 [18] Kazuhiro Ishige. On the existence of solutions of the Cauchy problem for porous medium equations with radon measure as initial data. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 521-546. doi: 10.3934/dcds.1995.1.521 [19] Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93 [20] Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

2018 Impact Factor: 1.143