`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Boundary integral and fast multipole method for two dimensional vesicle sets in Poiseuille flow

Pages: 1065 - 1076, Volume 15, Issue 4, June 2011

doi:10.3934/dcdsb.2011.15.1065       Abstract        References        Full Text (410.2K)       Related Articles

Hassib Selmi - Laboratoire d'Ingénierie Mathématique, Ecole Polytechnique de Tunisie, Université de Carthage, B.P. 743 - 2078 La Marsa, Tunisia (email)
Lassaad Elasmi - Laboratoire d'Ingénierie Mathématique, Ecole Polytechnique de Tunisie, Université de Carthage, B.P. 743 - 2078 La Marsa, Tunisia (email)
Giovanni Ghigliotti - Laboratoire Interdisciplinaire de Physique, 140, rue de la Physique, 38402 Saint Martin d'Hères, France (email)
Chaouqi Misbah - Laboratoire Interdisciplinaire de Physique, 140, rue de la Physique, 38402 Saint Martin d'Hères, France (email)

Abstract: Two dimensional numerical simulations of sets of vesicles in a Poiseuille flow are presented. Vesicles are a simple model to describe the dynamics of red cells in blood flow. At the scale of vesicles, the hydrodynamics is well described by the Stokes equation, whose linearity allows the use of Green's functions via the boundary integral method. This is coupled with the fast multipole method to acheive optimal scaling with respect to the number of discretization points. Results are presented for sets of different number of vesicles, showing their spatial organization. Vesicles assume a parachute-like shape and align one to the other in the centre of the parabolic profile. The relative distances depend on the total number of vesicles and on the position in the set.

Keywords:  Fast Multipole Method, Green's functions, Stokes flow, red blood cells.
Mathematics Subject Classification:  Primary: 41A58, 65Z05; Secondary: 74F10, 76D07.

Received: January 2010;      Revised: March 2010;      Published: March 2011.

 References