March  2014, 34(3): 1131-1146. doi: 10.3934/dcds.2014.34.1131

Regarding the absolute stability of Størmer-Cowell methods

1. 

Dept. of Mathematical Sciences, NTNU Trondheim, N-7491 Trondheim, Norway

2. 

Dept. Computer Science, University of Leuven, Belgium, BE-3001 Heverlee

Received  September 2012 Revised  October 2012 Published  August 2013

High order variants of the classical Størmer-Cowell methods are still a popular class of methods for computations in celestial mechanics. In this work we shall investigate the absolute stability of Størmer-Cowell methods close to zero, and present a characterization of the stability of methods of all orders. In particular, we show that many methods are not absolutely stable at any point in a neighborhood of the origin.
Citation: Syvert P. Nørsett, Andreas Asheim. Regarding the absolute stability of Størmer-Cowell methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1131-1146. doi: 10.3934/dcds.2014.34.1131
References:
[1]

G. Dahlquist, On accuracy and unconditional stability of linear multistep methods for second order differential equations, BIT; Nordisk Tidskrift for Informationsbehandling (BIT), 18 (1978), 133-136. doi: 10.1007/BF01931689.

[2]

W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numerische Mathematik, 3 (1961), 381-397. doi: 10.1007/BF01386037.

[3]

K. Grazier, W. Newman, J. Hyman, P. Sharp and D. Goldstein, Achieving Brouwer's law with high-order Störmer multistep methods,, ANZIAM J., 46 (). 

[4]

E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numerica, 12 (2003), 399-450. doi: 10.1017/S0962492902000144.

[5]

E. Hairer, S. Nørsett and G. Wanner, "Solving Ordinary Differential Equations: Nonstiff Problems, vol. 1," Springer Verlag, 1993.

[6]

E. Hairer and G. Wanner, "Solving Ordinary Differential Equations {II}: Stiff and Differential-Algebraic Problems, vol. 2," Springer, 2004.

[7]

P. Henrici, "Discrete Variable Methods in Ordinary Differential Equations, vol. 1," New York: Wiley, 1962.

[8]

J. Lambert, "Computational Methods in Ordinary Differential Equations," Wiley New York, 1973.

[9]

J. Lambert and I. Watson, Symmetric multistip methods for periodic initial value problems, IMA Journal of Applied Mathematics, 18 (1976), 189-202. doi: 10.1093/imamat/18.2.189.

[10]

W. I. Newman, F. Varadi, A. Y. Lee, W. M. Kaula, K. R. Grazier and J. M. Hyman, Numerical integration, Lyapunov exponents and the outer Solar System, Bulletin of the American Astronomical Society, 32 (2000), 859.

[11]

G. Quinlan and S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits, The Astronomical Journal, 100 (1990), 1694-1700.

[12]

P. Sharp, Comparisons of high order stormer and explicit Runge-kutta Nyström methods for N-body simulations of the solar system, Tech. Rep., Department of Mathematics, The University of Auckland, New Zealand, (2000).

[13]

E. Stiefel and D. G. Bettis, Stabilization of Cowell's method, Numerische Mathematik, 13 (1969), 154-175. doi: 10.1007/BF02163234.

[14]

E. Thorbergsen, "Undersøkelse av Noen Metoder for Baneproblemer," Master's thesis, Norges Tekniske Høyskole(NTH), Trondheim, Norway, 1976.

[15]

F. Varadi and B. Runnegar, Successive refinements in long-term integrations of planetary orbits, The Astrophysical Journal, 592 (2003), 620-630.

show all references

References:
[1]

G. Dahlquist, On accuracy and unconditional stability of linear multistep methods for second order differential equations, BIT; Nordisk Tidskrift for Informationsbehandling (BIT), 18 (1978), 133-136. doi: 10.1007/BF01931689.

[2]

W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numerische Mathematik, 3 (1961), 381-397. doi: 10.1007/BF01386037.

[3]

K. Grazier, W. Newman, J. Hyman, P. Sharp and D. Goldstein, Achieving Brouwer's law with high-order Störmer multistep methods,, ANZIAM J., 46 (). 

[4]

E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numerica, 12 (2003), 399-450. doi: 10.1017/S0962492902000144.

[5]

E. Hairer, S. Nørsett and G. Wanner, "Solving Ordinary Differential Equations: Nonstiff Problems, vol. 1," Springer Verlag, 1993.

[6]

E. Hairer and G. Wanner, "Solving Ordinary Differential Equations {II}: Stiff and Differential-Algebraic Problems, vol. 2," Springer, 2004.

[7]

P. Henrici, "Discrete Variable Methods in Ordinary Differential Equations, vol. 1," New York: Wiley, 1962.

[8]

J. Lambert, "Computational Methods in Ordinary Differential Equations," Wiley New York, 1973.

[9]

J. Lambert and I. Watson, Symmetric multistip methods for periodic initial value problems, IMA Journal of Applied Mathematics, 18 (1976), 189-202. doi: 10.1093/imamat/18.2.189.

[10]

W. I. Newman, F. Varadi, A. Y. Lee, W. M. Kaula, K. R. Grazier and J. M. Hyman, Numerical integration, Lyapunov exponents and the outer Solar System, Bulletin of the American Astronomical Society, 32 (2000), 859.

[11]

G. Quinlan and S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits, The Astronomical Journal, 100 (1990), 1694-1700.

[12]

P. Sharp, Comparisons of high order stormer and explicit Runge-kutta Nyström methods for N-body simulations of the solar system, Tech. Rep., Department of Mathematics, The University of Auckland, New Zealand, (2000).

[13]

E. Stiefel and D. G. Bettis, Stabilization of Cowell's method, Numerische Mathematik, 13 (1969), 154-175. doi: 10.1007/BF02163234.

[14]

E. Thorbergsen, "Undersøkelse av Noen Metoder for Baneproblemer," Master's thesis, Norges Tekniske Høyskole(NTH), Trondheim, Norway, 1976.

[15]

F. Varadi and B. Runnegar, Successive refinements in long-term integrations of planetary orbits, The Astrophysical Journal, 592 (2003), 620-630.

[1]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[2]

Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817

[3]

Qingguang Guan. Some estimates of virtual element methods for fourth order problems. Electronic Research Archive, 2021, 29 (6) : 4099-4118. doi: 10.3934/era.2021074

[4]

Ying Liu, Yabing Sun, Weidong Zhao. Explicit multistep stochastic characteristic approximation methods for forward backward stochastic differential equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 773-795. doi: 10.3934/dcdss.2021044

[5]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[6]

Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580

[7]

Lars Grüne, Vryan Gil Palma. Robustness of performance and stability for multistep and updated multistep MPC schemes. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4385-4414. doi: 10.3934/dcds.2015.35.4385

[8]

Andrew J. Steyer, Erik S. Van Vleck. Underlying one-step methods and nonautonomous stability of general linear methods. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2859-2877. doi: 10.3934/dcdsb.2018108

[9]

Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325

[10]

Xin-He Miao, Kai Yao, Ching-Yu Yang, Jein-Shan Chen. Levenberg-Marquardt method for absolute value equation associated with second-order cone. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 47-61. doi: 10.3934/naco.2021050

[11]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[12]

Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11

[13]

Jie Sun. On methods for solving nonlinear semidefinite optimization problems. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 1-14. doi: 10.3934/naco.2011.1.1

[14]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[15]

José A. Cañizo, Alexis Molino. Improved energy methods for nonlocal diffusion problems. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1405-1425. doi: 10.3934/dcds.2018057

[16]

Dang Van Hieu. Projection methods for solving split equilibrium problems. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2331-2349. doi: 10.3934/jimo.2019056

[17]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems and Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[18]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[19]

Thi Phuong Dong Nguyen, Jean Jacques Strodiot, Thi Thu Van Nguyen, Van Hien Nguyen. A family of extragradient methods for solving equilibrium problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 619-630. doi: 10.3934/jimo.2015.11.619

[20]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]