April  2015, 35(4): 1609-1640. doi: 10.3934/dcds.2015.35.1609

Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats

1. 

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, United States

2. 

Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849

3. 

Department of Mathematics, Drexel University, Philadelphia, PA 19014, United States

Received  July 2013 Revised  June 2014 Published  November 2014

This paper is devoted to the investigation of spatial spreading speeds and traveling wave solutions of monostable evolution equations with nonlocal dispersal in time and space periodic habitats. It has been shown in an earlier work by the first two authors of the current paper that such an equation has a unique time and space periodic positive stable solution $u^*(t,x)$. In this paper, we show that such an equation has a spatial spreading speed $c^*(\xi)$ in the direction of any given unit vector $\xi$. A variational characterization of $c^*(\xi)$ is given. Under the assumption that the nonlocal dispersal operator associated to the linearization of the monostable equation at the trivial solution $0$ has a principal eigenvalue, we also show that the monostable equation has a continuous periodic traveling wave solution connecting $u^*(\cdot,\cdot)$ and $0$ propagating in any given direction of $\xi$ with speed $c>c^*(\xi)$.
Citation: Nar Rawal, Wenxian Shen, Aijun Zhang. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1609-1640. doi: 10.3934/dcds.2015.35.1609
References:
[1]

P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428. doi: 10.1016/j.jmaa.2006.09.007. Google Scholar

[2]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Func. Anal., 255 (2008), 2146. doi: 10.1016/j.jfa.2008.06.030. Google Scholar

[3]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, I - Periodic framework,, J. Eur. Math. Soc., 7 (2005), 172. doi: 10.4171/JEMS/26. Google Scholar

[4]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, II - General domains,, J. Amer. Math. Soc., 23 (2010), 1. doi: 10.1090/S0894-0347-09-00633-X. Google Scholar

[5]

H. Berestycki, F. Hamel and L. Roques, Analysis of periodically fragmented environment model: II - Biological invasions and pulsating traveling fronts,, J. Math. Pures Appl., 84 (2005), 1101. doi: 10.1016/j.matpur.2004.10.006. Google Scholar

[6]

R. Bürger, Perturbations of positive semigroups and applications to population genetics,, Math. Z., 197 (1988), 259. doi: 10.1007/BF01215194. Google Scholar

[7]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl., 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[8]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation,, Annali di Matematica, 185(3) (2006), 461. doi: 10.1007/s10231-005-0163-7. Google Scholar

[9]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators,, J. Differential Equations, 249 (2010), 2921. doi: 10.1016/j.jde.2010.07.003. Google Scholar

[10]

J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity,, SIAM J. Math. Anal., 39 (2008), 1693. doi: 10.1137/060676854. Google Scholar

[11]

J. Coville, J. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 179. doi: 10.1016/j.anihpc.2012.07.005. Google Scholar

[12]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Analysis, 60 (2005), 797. doi: 10.1016/j.na.2003.10.030. Google Scholar

[13]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, Trends in nonlinear analysis, (2003), 153. Google Scholar

[14]

R. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 335. doi: 10.1111/j.1469-1809.1937.tb02153.x. Google Scholar

[15]

M. Freidlin, On wave front propagation in periodic media., In: Stochastic analysis and applications, 7 (1984), 147. Google Scholar

[16]

M. Freidlin and J. Gärtner, On the propagation of concentration waves in periodic and ramdom media,, Soviet Math. Dokl., 20 (1979), 1282. Google Scholar

[17]

J. García-Melán and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems,, J. Differential Equations, 246 (2009), 21. doi: 10.1016/j.jde.2008.04.015. Google Scholar

[18]

M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow and G. T. Vickers, Non-local dispersal,, Differential Integral Equations, 18 (2005), 1299. Google Scholar

[19]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Math. 840, 840 (1981). Google Scholar

[20]

G. Hetzer, W. Shen and A. Zhang, Effects of spatial variations and dispersal strategies on principal eigenvalues of dispersal operators and spreading speeds of monostable equations,, Rocky Mountain Journal of Mathematics, 43 (2013), 489. doi: 10.1216/RMJ-2013-43-2-489. Google Scholar

[21]

J. Huang and W. Shen, Speeds of spread and propagation for KPP models in time almost and space peirodic media,, SIAM J. Appl. Dynam. Syst., 8 (2009), 790. doi: 10.1137/080723259. Google Scholar

[22]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483. doi: 10.1007/s00285-003-0210-1. Google Scholar

[23]

C.-Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-Local dispersal,, Discrete and Continuous Dynamical Systems, 26 (2010), 551. doi: 10.3934/dcds.2010.26.551. Google Scholar

[24]

A. Kolmogorov, I. Petrowsky and N. Piscunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem,, Bjul. Moskovskogo Gos. Univ., 1 (1937), 1. Google Scholar

[25]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154. Google Scholar

[26]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, Journal of Functional Analysis, 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[27]

G. Nadin, Traveling fronts in space-time periodic media,, J. Math. Pures Anal., 92 (2009), 232. doi: 10.1016/j.matpur.2009.04.002. Google Scholar

[28]

G. Nadin and L. Rossi, Propagation phenomena for time heterogeneous KPP reaction-diffusion equations,, J. Math. Pures Appl., 98 (2012), 633. doi: 10.1016/j.matpur.2012.05.005. Google Scholar

[29]

J. Nolen, M. Rudd and J. Xin, Existence of KPP fronts in spatially-temporally periodic adevction and variational principle for propagation speeds,, Dynamics of PDE, 2 (2005), 1. doi: 10.4310/DPDE.2005.v2.n1.a1. Google Scholar

[30]

J. Nolen and J. Xin, Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle,, Discrete and Continuous Dynamical Systems, 13 (2005), 1217. doi: 10.3934/dcds.2005.13.1217. Google Scholar

[31]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag New York Berlin Heidelberg Tokyo, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[32]

N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications,, Journal of Dynamics and Differential Equations, 24 (2012), 927. doi: 10.1007/s10884-012-9276-z. Google Scholar

[33]

W. Shen, Variational principle for spatial spreading speeds and generalized propgating speeds in time almost and space periodic KPP models,, Trans. Amer. Math. Soc., 362 (2010), 5125. doi: 10.1090/S0002-9947-10-04950-0. Google Scholar

[34]

W. Shen, Existence of generalized traveling waves in time recurrent and space periodic monostable equations,, J. Appl. Anal. Comput., 1 (2011), 69. Google Scholar

[35]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats,, Journal of Differential Equations, 249 (2010), 747. doi: 10.1016/j.jde.2010.04.012. Google Scholar

[36]

W. Shen and A. Zhang, Traveling wave solutions of monostable equations with nonlocal dispersal in space periodic habitats,, Communications on Applied Nonlinear Analysis, 19 (2012), 73. Google Scholar

[37]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats,, Proc. Amer. Math. Soc., 140 (2012), 1681. doi: 10.1090/S0002-9939-2011-11011-6. Google Scholar

[38]

H. F. Weinberger, Long-time behavior of a class of biology models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. Google Scholar

[39]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511. doi: 10.1007/s00285-002-0169-3. Google Scholar

show all references

References:
[1]

P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428. doi: 10.1016/j.jmaa.2006.09.007. Google Scholar

[2]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Func. Anal., 255 (2008), 2146. doi: 10.1016/j.jfa.2008.06.030. Google Scholar

[3]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, I - Periodic framework,, J. Eur. Math. Soc., 7 (2005), 172. doi: 10.4171/JEMS/26. Google Scholar

[4]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, II - General domains,, J. Amer. Math. Soc., 23 (2010), 1. doi: 10.1090/S0894-0347-09-00633-X. Google Scholar

[5]

H. Berestycki, F. Hamel and L. Roques, Analysis of periodically fragmented environment model: II - Biological invasions and pulsating traveling fronts,, J. Math. Pures Appl., 84 (2005), 1101. doi: 10.1016/j.matpur.2004.10.006. Google Scholar

[6]

R. Bürger, Perturbations of positive semigroups and applications to population genetics,, Math. Z., 197 (1988), 259. doi: 10.1007/BF01215194. Google Scholar

[7]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl., 86 (2006), 271. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[8]

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equation,, Annali di Matematica, 185(3) (2006), 461. doi: 10.1007/s10231-005-0163-7. Google Scholar

[9]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators,, J. Differential Equations, 249 (2010), 2921. doi: 10.1016/j.jde.2010.07.003. Google Scholar

[10]

J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity,, SIAM J. Math. Anal., 39 (2008), 1693. doi: 10.1137/060676854. Google Scholar

[11]

J. Coville, J. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 179. doi: 10.1016/j.anihpc.2012.07.005. Google Scholar

[12]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Analysis, 60 (2005), 797. doi: 10.1016/j.na.2003.10.030. Google Scholar

[13]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, Trends in nonlinear analysis, (2003), 153. Google Scholar

[14]

R. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 335. doi: 10.1111/j.1469-1809.1937.tb02153.x. Google Scholar

[15]

M. Freidlin, On wave front propagation in periodic media., In: Stochastic analysis and applications, 7 (1984), 147. Google Scholar

[16]

M. Freidlin and J. Gärtner, On the propagation of concentration waves in periodic and ramdom media,, Soviet Math. Dokl., 20 (1979), 1282. Google Scholar

[17]

J. García-Melán and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems,, J. Differential Equations, 246 (2009), 21. doi: 10.1016/j.jde.2008.04.015. Google Scholar

[18]

M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow and G. T. Vickers, Non-local dispersal,, Differential Integral Equations, 18 (2005), 1299. Google Scholar

[19]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Math. 840, 840 (1981). Google Scholar

[20]

G. Hetzer, W. Shen and A. Zhang, Effects of spatial variations and dispersal strategies on principal eigenvalues of dispersal operators and spreading speeds of monostable equations,, Rocky Mountain Journal of Mathematics, 43 (2013), 489. doi: 10.1216/RMJ-2013-43-2-489. Google Scholar

[21]

J. Huang and W. Shen, Speeds of spread and propagation for KPP models in time almost and space peirodic media,, SIAM J. Appl. Dynam. Syst., 8 (2009), 790. doi: 10.1137/080723259. Google Scholar

[22]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483. doi: 10.1007/s00285-003-0210-1. Google Scholar

[23]

C.-Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-Local dispersal,, Discrete and Continuous Dynamical Systems, 26 (2010), 551. doi: 10.3934/dcds.2010.26.551. Google Scholar

[24]

A. Kolmogorov, I. Petrowsky and N. Piscunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem,, Bjul. Moskovskogo Gos. Univ., 1 (1937), 1. Google Scholar

[25]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154. Google Scholar

[26]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, Journal of Functional Analysis, 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[27]

G. Nadin, Traveling fronts in space-time periodic media,, J. Math. Pures Anal., 92 (2009), 232. doi: 10.1016/j.matpur.2009.04.002. Google Scholar

[28]

G. Nadin and L. Rossi, Propagation phenomena for time heterogeneous KPP reaction-diffusion equations,, J. Math. Pures Appl., 98 (2012), 633. doi: 10.1016/j.matpur.2012.05.005. Google Scholar

[29]

J. Nolen, M. Rudd and J. Xin, Existence of KPP fronts in spatially-temporally periodic adevction and variational principle for propagation speeds,, Dynamics of PDE, 2 (2005), 1. doi: 10.4310/DPDE.2005.v2.n1.a1. Google Scholar

[30]

J. Nolen and J. Xin, Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle,, Discrete and Continuous Dynamical Systems, 13 (2005), 1217. doi: 10.3934/dcds.2005.13.1217. Google Scholar

[31]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag New York Berlin Heidelberg Tokyo, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[32]

N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications,, Journal of Dynamics and Differential Equations, 24 (2012), 927. doi: 10.1007/s10884-012-9276-z. Google Scholar

[33]

W. Shen, Variational principle for spatial spreading speeds and generalized propgating speeds in time almost and space periodic KPP models,, Trans. Amer. Math. Soc., 362 (2010), 5125. doi: 10.1090/S0002-9947-10-04950-0. Google Scholar

[34]

W. Shen, Existence of generalized traveling waves in time recurrent and space periodic monostable equations,, J. Appl. Anal. Comput., 1 (2011), 69. Google Scholar

[35]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats,, Journal of Differential Equations, 249 (2010), 747. doi: 10.1016/j.jde.2010.04.012. Google Scholar

[36]

W. Shen and A. Zhang, Traveling wave solutions of monostable equations with nonlocal dispersal in space periodic habitats,, Communications on Applied Nonlinear Analysis, 19 (2012), 73. Google Scholar

[37]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats,, Proc. Amer. Math. Soc., 140 (2012), 1681. doi: 10.1090/S0002-9939-2011-11011-6. Google Scholar

[38]

H. F. Weinberger, Long-time behavior of a class of biology models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. Google Scholar

[39]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511. doi: 10.1007/s00285-002-0169-3. Google Scholar

[1]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[2]

Peixuan Weng, Xiao-Qiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 343-366. doi: 10.3934/dcds.2011.29.343

[3]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[4]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[5]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[6]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[7]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[8]

Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027

[9]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[10]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[11]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[12]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[13]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[14]

Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049

[15]

Shi-Liang Wu, Cheng-Hsiung Hsu. Propagation of monostable traveling fronts in discrete periodic media with delay. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2987-3022. doi: 10.3934/dcds.2018128

[16]

Qiaoling Chen, Fengquan Li, Feng Wang. A diffusive logistic problem with a free boundary in time-periodic environment: Favorable habitat or unfavorable habitat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 13-35. doi: 10.3934/dcdsb.2016.21.13

[17]

James Nolen, Jack Xin. Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1217-1234. doi: 10.3934/dcds.2005.13.1217

[18]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[19]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

[20]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]