July  2015, 35(7): 3059-3086. doi: 10.3934/dcds.2015.35.3059

On regular solutions of the $3$D compressible isentropic Euler-Boltzmann equations with vacuum

1. 

Department of Mathematics and Key Lab of Scientific and Engineering Computing (MOE), Shanghai Jiao Tong University, Shanghai 200240

2. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Received  September 2013 Revised  November 2014 Published  January 2015

In this paper, we discuss the Cauchy problem for the compressible isentropic Euler-Boltzmann equations with vacuum in radiation hydrodynamics. We establish the existence of a unique local regular solution with vacuum by the theory of quasi-linear symmetric hyperbolic systems and some techniques dealing with the complexity caused by the coupling between fluid and radiation field under some physical assumptions for the radiation quantities. Moreover, it is interesting to show the non-global existence of regular solutions caused by the effect of vacuum for polytropic gases with adiabatic exponent $1<\gamma\leq 3$ via some observations on the propagation of the radiation field. Compared with [11][15][20], some new initial conditions that will lead to the finite time blow-up for classical solutions have been introduced. These blow-up results tell us that the radiation effect on the fluid is not strong enough to prevent the formation of singularities caused by the appearance of vacuum.
Citation: Yachun Li, Shengguo Zhu. On regular solutions of the $3$D compressible isentropic Euler-Boltzmann equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3059-3086. doi: 10.3934/dcds.2015.35.3059
References:
[1]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation hydrodynamics,, J. Quant. Spectroscopy Rad. Transf., 85 (2004), 385. doi: 10.1016/S0022-4073(03)00233-4. Google Scholar

[2]

B. Ducomet, E. Feireisl and Š. Nečasová, On a model in radiation hydrodynamics,, Ann. Inst. H. Poincaré. (C) Non Line. Anal., 28 (2011), 797. doi: 10.1016/j.anihpc.2011.06.002. Google Scholar

[3]

B. Ducomet and Š. Nečasová, Global weak solutions to the 1-D compressible Navier-Stokes equations with radiation,, Commun. Math. Anal., 8 (2010), 23. Google Scholar

[4]

B. Ducomet and Š. Nečasová, Large time behavior of the motion of a viscous heat-conducting one-dimensional gas coupled to radiation,, Annali di Matematica Pura ed Applicata , 191 (2012), 219. doi: 10.1007/s10231-010-0180-z. Google Scholar

[5]

P. Jiang and D. Wang, Formation of singularities of solutions to the three-dimensional Euler-Boltzmann equations in radiation hydrodynamics,, Nonlinearity, 23 (2010), 809. doi: 10.1088/0951-7715/23/4/003. Google Scholar

[6]

S. Jiang and X. Zhong, Local existence and fiinte-time blow-up in multidimensional radiation hydrodynamics,, J. Math. Fluid Mech., 9 (2007), 543. doi: 10.1007/s00021-005-0213-3. Google Scholar

[7]

R. Kippenhahn and A. Weigert, Stellar structure and Evolution,, Springer, (1994). Google Scholar

[8]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Phys., 5 (1964), 611. doi: 10.1063/1.1704154. Google Scholar

[9]

Y. Li and S. Zhu, Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum,, J. Differential Equations, 256 (2014), 3943. doi: 10.1016/j.jde.2014.03.007. Google Scholar

[10]

Y. Li and S. Zhu, Existence results for the compressible radiation hydrodynamics equations with vacuum,, 2013, (). Google Scholar

[11]

T. Liu and T. Yang, Compressible Euler equations with vacuum,, J. Differential Equations, 140 (1997), 223. doi: 10.1006/jdeq.1997.3281. Google Scholar

[12]

T. Liu, Compressible flow with damping and vacuum,, Japan J. Indust. Appl. Math., 13 (1996), 25. doi: 10.1007/BF03167296. Google Scholar

[13]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Science, 53 (1984). doi: 10.1007/978-1-4612-1116-7. Google Scholar

[14]

T. Makino, Blowing up solutions of the Euler-Possion equation for the evolution of gaseous stars,, Trans. Theo. Statist. Phys., 21 (1992), 615. doi: 10.1080/00411459208203801. Google Scholar

[15]

T. Makino, S. Ukai and S. Kawashima, Sur la solution à support compact de equations d'Euler compressible,, Japan. J. Appl. Math., 3 (1986), 249. doi: 10.1007/BF03167100. Google Scholar

[16]

J. Neumann, Discussion on the Existence and Uniqueness or Multiplicity of Solutions of the Aerodynamical Equations,, Collected works of J. Von Neumann, (1949). Google Scholar

[17]

G. Pomrancing, The Equations of Radiation Hydrodynamics,, Oxford, (1973). Google Scholar

[18]

T. Sideris, T. Becca and D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with Damping,, Commun. Part. Differ. Equations, 28 (2003), 795. doi: 10.1081/PDE-120020497. Google Scholar

[19]

T. Sideris, Formation of singulirities in three-dimensional compressible fluids,, Commun. Math. Phys., 101 (1985), 475. doi: 10.1007/BF01210741. Google Scholar

[20]

Z. Xin and W. Yan, On blow-up of classical solutions to the compressible Navier-Stokes Equations,, Commun. Math. Phys., 321 (2013), 529. doi: 10.1007/s00220-012-1610-0. Google Scholar

[21]

C. Xu and T. Yang, Local existence with physical vacuum boundary condition to Euler equations with damping,, J. Differertial Equations, 210 (2005), 217. doi: 10.1016/j.jde.2004.06.005. Google Scholar

show all references

References:
[1]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation hydrodynamics,, J. Quant. Spectroscopy Rad. Transf., 85 (2004), 385. doi: 10.1016/S0022-4073(03)00233-4. Google Scholar

[2]

B. Ducomet, E. Feireisl and Š. Nečasová, On a model in radiation hydrodynamics,, Ann. Inst. H. Poincaré. (C) Non Line. Anal., 28 (2011), 797. doi: 10.1016/j.anihpc.2011.06.002. Google Scholar

[3]

B. Ducomet and Š. Nečasová, Global weak solutions to the 1-D compressible Navier-Stokes equations with radiation,, Commun. Math. Anal., 8 (2010), 23. Google Scholar

[4]

B. Ducomet and Š. Nečasová, Large time behavior of the motion of a viscous heat-conducting one-dimensional gas coupled to radiation,, Annali di Matematica Pura ed Applicata , 191 (2012), 219. doi: 10.1007/s10231-010-0180-z. Google Scholar

[5]

P. Jiang and D. Wang, Formation of singularities of solutions to the three-dimensional Euler-Boltzmann equations in radiation hydrodynamics,, Nonlinearity, 23 (2010), 809. doi: 10.1088/0951-7715/23/4/003. Google Scholar

[6]

S. Jiang and X. Zhong, Local existence and fiinte-time blow-up in multidimensional radiation hydrodynamics,, J. Math. Fluid Mech., 9 (2007), 543. doi: 10.1007/s00021-005-0213-3. Google Scholar

[7]

R. Kippenhahn and A. Weigert, Stellar structure and Evolution,, Springer, (1994). Google Scholar

[8]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Phys., 5 (1964), 611. doi: 10.1063/1.1704154. Google Scholar

[9]

Y. Li and S. Zhu, Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum,, J. Differential Equations, 256 (2014), 3943. doi: 10.1016/j.jde.2014.03.007. Google Scholar

[10]

Y. Li and S. Zhu, Existence results for the compressible radiation hydrodynamics equations with vacuum,, 2013, (). Google Scholar

[11]

T. Liu and T. Yang, Compressible Euler equations with vacuum,, J. Differential Equations, 140 (1997), 223. doi: 10.1006/jdeq.1997.3281. Google Scholar

[12]

T. Liu, Compressible flow with damping and vacuum,, Japan J. Indust. Appl. Math., 13 (1996), 25. doi: 10.1007/BF03167296. Google Scholar

[13]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Science, 53 (1984). doi: 10.1007/978-1-4612-1116-7. Google Scholar

[14]

T. Makino, Blowing up solutions of the Euler-Possion equation for the evolution of gaseous stars,, Trans. Theo. Statist. Phys., 21 (1992), 615. doi: 10.1080/00411459208203801. Google Scholar

[15]

T. Makino, S. Ukai and S. Kawashima, Sur la solution à support compact de equations d'Euler compressible,, Japan. J. Appl. Math., 3 (1986), 249. doi: 10.1007/BF03167100. Google Scholar

[16]

J. Neumann, Discussion on the Existence and Uniqueness or Multiplicity of Solutions of the Aerodynamical Equations,, Collected works of J. Von Neumann, (1949). Google Scholar

[17]

G. Pomrancing, The Equations of Radiation Hydrodynamics,, Oxford, (1973). Google Scholar

[18]

T. Sideris, T. Becca and D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with Damping,, Commun. Part. Differ. Equations, 28 (2003), 795. doi: 10.1081/PDE-120020497. Google Scholar

[19]

T. Sideris, Formation of singulirities in three-dimensional compressible fluids,, Commun. Math. Phys., 101 (1985), 475. doi: 10.1007/BF01210741. Google Scholar

[20]

Z. Xin and W. Yan, On blow-up of classical solutions to the compressible Navier-Stokes Equations,, Commun. Math. Phys., 321 (2013), 529. doi: 10.1007/s00220-012-1610-0. Google Scholar

[21]

C. Xu and T. Yang, Local existence with physical vacuum boundary condition to Euler equations with damping,, J. Differertial Equations, 210 (2005), 217. doi: 10.1016/j.jde.2004.06.005. Google Scholar

[1]

Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023

[2]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[3]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[4]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[5]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[6]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[7]

Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117

[8]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[9]

Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure & Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531

[10]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[11]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[12]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[13]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[14]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[15]

Binbin Shi, Weike Wang. Existence and blow up of solutions to the $ 2D $ Burgers equation with supercritical dissipation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019215

[16]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[17]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020039

[18]

Claude-Michael Brauner, Josephus Hulshof, J.-F. Ripoll. Existence of travelling wave solutions in a combustion-radiation model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 193-208. doi: 10.3934/dcdsb.2001.1.193

[19]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[20]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]