March  2015, 10(1): i-iii. doi: 10.3934/nhm.2015.10.1i

Preface: "New trends, models and applications in complex and multiplex networks"

1. 

Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, ETSI Agrónomos, 28040, Madrid, Spain, Spain

2. 

Departamento de Matemática Aplicada, Ciencia e Ingeniería de los Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain, Spain

Published  February 2015

The real world surrounding us is full of complex systems from various types and categories. Internet, the World Wide Web, biological and biochemical networks (brain, metabolic, protein and genomic networks), transport networks (underground, train, airline networks, road networks), communication networks (computer servers, Internet, online social networks), and many others (social community networks, electric power grids and water supply networks,...) are a few examples of the many existing kinds and types of networks [1,2,3,4,6,8,9,10,11]. In the recent past years, the study of structure and dynamics of complex networks has been the subject of intense interest. Recent advances in the study of complex networked systems has put the spotlight on the existence of more than one type of links whose interplay can affect the structure and function of those systems [5,7]. In these networks, relevant information may not be captured if the single layers are analyzed separately, since these different components and units interact with others through different channels of connectivity and dependencies. The global characteristics and behavior of these systems depend on multiple dimensions of integration, relationship or cleavage of its units.

For more information please click the “Full Text” above.
Citation: Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks & Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i
References:
[1]

R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.  doi: 10.1103/RevModPhys.74.47.  Google Scholar

[2]

A. L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

Y. Bar-Yam, Dynamics of Complex Systems,, $1^{st}$ Edition, (1997).   Google Scholar

[4]

A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks,, $1^{st}$ Edition, (2008).  doi: 10.1017/CBO9780511791383.  Google Scholar

[5]

S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin, The structure and dynamics of multilayer networks,, Physics Reports, 544 (2014), 1.  doi: 10.1016/j.physrep.2014.07.001.  Google Scholar

[6]

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics,, Physics Reports, 424 (2006), 175.  doi: 10.1016/j.physrep.2005.10.009.  Google Scholar

[7]

M. De Domenico, A. Solè-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A. Porter, S. Gómez and A. Arenas, Mathematical formulation of multi-layer networks,, Phys. Rev. X, 3 (2013), 399.   Google Scholar

[8]

M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[9]

M. E. J. Newman, A. L. Barabási and D. J. Watts, The Structure and Dynamics of Networks,, Princeton University Press, (2006).   Google Scholar

[10]

S. H. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268.   Google Scholar

[11]

D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks,, Nature, 393 (1998), 440.   Google Scholar

show all references

References:
[1]

R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.  doi: 10.1103/RevModPhys.74.47.  Google Scholar

[2]

A. L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

Y. Bar-Yam, Dynamics of Complex Systems,, $1^{st}$ Edition, (1997).   Google Scholar

[4]

A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks,, $1^{st}$ Edition, (2008).  doi: 10.1017/CBO9780511791383.  Google Scholar

[5]

S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin, The structure and dynamics of multilayer networks,, Physics Reports, 544 (2014), 1.  doi: 10.1016/j.physrep.2014.07.001.  Google Scholar

[6]

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics,, Physics Reports, 424 (2006), 175.  doi: 10.1016/j.physrep.2005.10.009.  Google Scholar

[7]

M. De Domenico, A. Solè-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A. Porter, S. Gómez and A. Arenas, Mathematical formulation of multi-layer networks,, Phys. Rev. X, 3 (2013), 399.   Google Scholar

[8]

M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[9]

M. E. J. Newman, A. L. Barabási and D. J. Watts, The Structure and Dynamics of Networks,, Princeton University Press, (2006).   Google Scholar

[10]

S. H. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268.   Google Scholar

[11]

D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks,, Nature, 393 (1998), 440.   Google Scholar

[1]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[2]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[3]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

[4]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[5]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283

[6]

Ana Alonso Rodríguez, Luigi C. Berselli, Alessandro Morando, Paola Trebeschi. Preface. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : i-i. doi: 10.3934/dcdss.2016.9.1i

[7]

M. Liero, S. Reichelt, G. Schneider, F. Theil, M. Thomas. Preface. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : i-iv. doi: 10.3934/dcdss.2020455

[8]

Philippe G. Ciarlet. Preface. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : i-ii. doi: 10.3934/dcds.2009.23.1i

[9]

Thibaut Deheuvels, Antoine Henrot, El Haj Laamri, Alain Miranville, Jean Rodolphe Roche, Didier Schmitt. Preface. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : i-vi. doi: 10.3934/dcdss.2020437

[10]

Michal Beneš, Tetsuya Ishiwata, Masato Kimura, Shigetoshi Yazaki. Preface. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : ⅰ-ⅰ. doi: 10.3934/dcdss.2021009

[11]

Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165

[12]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[13]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[14]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[17]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[18]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

[Back to Top]