• Previous Article
    An alternating direction method for solving a class of inverse semi-definite quadratic programming problems
  • JIMO Home
  • This Issue
  • Next Article
    Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
January  2016, 12(1): 303-315. doi: 10.3934/jimo.2016.12.303

Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback

1. 

Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi 10307, Vietnam, Vietnam

2. 

Université de Limoges, Laboratoire XLIM, 123, avenue Albert Thomas, 87060 Limoges CEDEX, France

Received  November 2014 Revised  January 2015 Published  April 2015

This paper studies the robust finite-time $H_\infty$ control for a class of nonlinear systems with time-varying delay and disturbances via output feedback. Based on the Lyapunov functional method and a generalized Jensen integral inequality, novel delay-dependent conditions for the existence of output feedback controllers are established in terms of linear matrix inequalities (LMIs). The proposed conditions allow us to design the output feedback controllers which robustly stabilize the closed-loop system in the finite-time sense. An application to $H_\infty$ control of uncertain linear systems with interval time-varying delay is also given. A numerical example is given to illustrate the efficiency of the proposed method.
Citation: Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303
References:
[1]

Automatica, 42 (2006), 337-342. doi: 10.1016/j.automatica.2005.09.007.  Google Scholar

[2]

Automatica, 49 (2013), 2546-2550. doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[3]

Automatica, 42 (2006), 183-188. doi: 10.1016/j.automatica.2005.08.012.  Google Scholar

[4]

SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611970777.  Google Scholar

[5]

In Proc IRE Int Convention Record, 4 (1961), 83-87. Google Scholar

[6]

International Journal of Control, 76 (2003), 48-60. doi: 10.1080/0020717021000049151.  Google Scholar

[7]

The MathWorks, Inc, 1995. Google Scholar

[8]

IEEE Transactions on Automatic Control, 54 (2009), 364-369. doi: 10.1109/TAC.2008.2008325.  Google Scholar

[9]

Journal of Industrial and Management Optimization, 10 (2014), 413-441.  Google Scholar

[10]

Control Engineering. Birkhäuser/Springer, New York, 2013.  Google Scholar

[11]

Journal of Optimization Theory and Applications, 137 (2008), 521-532. doi: 10.1007/s10957-008-9357-7.  Google Scholar

[12]

Nonlinear Analysis: Hybrid Systems, 6 (2012), 885-898. doi: 10.1016/j.nahs.2012.03.001.  Google Scholar

[13]

Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043-1049. doi: 10.1016/j.cnsns.2008.03.010.  Google Scholar

[14]

Systems and Control Letters, 57 (2008), 561-566. doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[15]

Journal of Optimization Theory and Applications,151 (2011), 100-120. doi: 10.1007/s10957-011-9858-7.  Google Scholar

[16]

Journal of Optimization Theory and Applications, 151 (2011), 100-120. doi: 10.1007/s10957-011-9858-7.  Google Scholar

[17]

Automatica, 49 (2013), 2860-2866. doi: 10.1016/j.automatica.2013.05.030.  Google Scholar

[18]

IMA journal of mathematical control and information, 26 (2009), 23-44. doi: 10.1093/imamci/dnm028.  Google Scholar

[19]

Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766-1778. doi: 10.1016/j.cnsns.2011.09.022.  Google Scholar

[20]

Journal of the Franklin Institute, 348 (2011), 331-352. doi: 10.1016/j.jfranklin.2010.12.001.  Google Scholar

[21]

Journal of Industrial and Management Optimization, 5 (2009), 153-159. doi: 10.3934/jimo.2009.5.153.  Google Scholar

[22]

Applied Mathematics and Computation, 218 (2012), 5629-5640. doi: 10.1016/j.amc.2011.11.057.  Google Scholar

show all references

References:
[1]

Automatica, 42 (2006), 337-342. doi: 10.1016/j.automatica.2005.09.007.  Google Scholar

[2]

Automatica, 49 (2013), 2546-2550. doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[3]

Automatica, 42 (2006), 183-188. doi: 10.1016/j.automatica.2005.08.012.  Google Scholar

[4]

SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611970777.  Google Scholar

[5]

In Proc IRE Int Convention Record, 4 (1961), 83-87. Google Scholar

[6]

International Journal of Control, 76 (2003), 48-60. doi: 10.1080/0020717021000049151.  Google Scholar

[7]

The MathWorks, Inc, 1995. Google Scholar

[8]

IEEE Transactions on Automatic Control, 54 (2009), 364-369. doi: 10.1109/TAC.2008.2008325.  Google Scholar

[9]

Journal of Industrial and Management Optimization, 10 (2014), 413-441.  Google Scholar

[10]

Control Engineering. Birkhäuser/Springer, New York, 2013.  Google Scholar

[11]

Journal of Optimization Theory and Applications, 137 (2008), 521-532. doi: 10.1007/s10957-008-9357-7.  Google Scholar

[12]

Nonlinear Analysis: Hybrid Systems, 6 (2012), 885-898. doi: 10.1016/j.nahs.2012.03.001.  Google Scholar

[13]

Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043-1049. doi: 10.1016/j.cnsns.2008.03.010.  Google Scholar

[14]

Systems and Control Letters, 57 (2008), 561-566. doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[15]

Journal of Optimization Theory and Applications,151 (2011), 100-120. doi: 10.1007/s10957-011-9858-7.  Google Scholar

[16]

Journal of Optimization Theory and Applications, 151 (2011), 100-120. doi: 10.1007/s10957-011-9858-7.  Google Scholar

[17]

Automatica, 49 (2013), 2860-2866. doi: 10.1016/j.automatica.2013.05.030.  Google Scholar

[18]

IMA journal of mathematical control and information, 26 (2009), 23-44. doi: 10.1093/imamci/dnm028.  Google Scholar

[19]

Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766-1778. doi: 10.1016/j.cnsns.2011.09.022.  Google Scholar

[20]

Journal of the Franklin Institute, 348 (2011), 331-352. doi: 10.1016/j.jfranklin.2010.12.001.  Google Scholar

[21]

Journal of Industrial and Management Optimization, 5 (2009), 153-159. doi: 10.3934/jimo.2009.5.153.  Google Scholar

[22]

Applied Mathematics and Computation, 218 (2012), 5629-5640. doi: 10.1016/j.amc.2011.11.057.  Google Scholar

[1]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[2]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[3]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[4]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[5]

Bingru Zhang, Chuanye Gu, Jueyou Li. Distributed convex optimization with coupling constraints over time-varying directed graphs. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2119-2138. doi: 10.3934/jimo.2020061

[6]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[7]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[8]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[9]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[10]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[11]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[12]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[13]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[14]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021127

[15]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[16]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[17]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[18]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[19]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[20]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]