• Previous Article
    An alternating direction method for solving a class of inverse semi-definite quadratic programming problems
  • JIMO Home
  • This Issue
  • Next Article
    Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
January  2016, 12(1): 303-315. doi: 10.3934/jimo.2016.12.303

Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback

1. 

Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi 10307, Vietnam, Vietnam

2. 

Université de Limoges, Laboratoire XLIM, 123, avenue Albert Thomas, 87060 Limoges CEDEX, France

Received  November 2014 Revised  January 2015 Published  April 2015

This paper studies the robust finite-time $H_\infty$ control for a class of nonlinear systems with time-varying delay and disturbances via output feedback. Based on the Lyapunov functional method and a generalized Jensen integral inequality, novel delay-dependent conditions for the existence of output feedback controllers are established in terms of linear matrix inequalities (LMIs). The proposed conditions allow us to design the output feedback controllers which robustly stabilize the closed-loop system in the finite-time sense. An application to $H_\infty$ control of uncertain linear systems with interval time-varying delay is also given. A numerical example is given to illustrate the efficiency of the proposed method.
Citation: Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303
References:
[1]

F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.  doi: 10.1016/j.automatica.2005.09.007.  Google Scholar

[2]

F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[3]

E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.  doi: 10.1016/j.automatica.2005.08.012.  Google Scholar

[4]

S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[5]

P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83.   Google Scholar

[6]

E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.  doi: 10.1080/0020717021000049151.  Google Scholar

[7]

P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995).   Google Scholar

[8]

G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.  doi: 10.1109/TAC.2008.2008325.  Google Scholar

[9]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.   Google Scholar

[10]

V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).   Google Scholar

[11]

O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.  doi: 10.1007/s10957-008-9357-7.  Google Scholar

[12]

H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.  doi: 10.1016/j.nahs.2012.03.001.  Google Scholar

[13]

Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.  doi: 10.1016/j.cnsns.2008.03.010.  Google Scholar

[14]

E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[15]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[16]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[17]

A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.  doi: 10.1016/j.automatica.2013.05.030.  Google Scholar

[18]

L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.  doi: 10.1093/imamci/dnm028.  Google Scholar

[19]

Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.  doi: 10.1016/j.cnsns.2011.09.022.  Google Scholar

[20]

W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.  doi: 10.1016/j.jfranklin.2010.12.001.  Google Scholar

[21]

H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.  doi: 10.3934/jimo.2009.5.153.  Google Scholar

[22]

Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.  doi: 10.1016/j.amc.2011.11.057.  Google Scholar

show all references

References:
[1]

F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.  doi: 10.1016/j.automatica.2005.09.007.  Google Scholar

[2]

F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[3]

E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.  doi: 10.1016/j.automatica.2005.08.012.  Google Scholar

[4]

S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[5]

P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83.   Google Scholar

[6]

E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.  doi: 10.1080/0020717021000049151.  Google Scholar

[7]

P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995).   Google Scholar

[8]

G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.  doi: 10.1109/TAC.2008.2008325.  Google Scholar

[9]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.   Google Scholar

[10]

V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).   Google Scholar

[11]

O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.  doi: 10.1007/s10957-008-9357-7.  Google Scholar

[12]

H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.  doi: 10.1016/j.nahs.2012.03.001.  Google Scholar

[13]

Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.  doi: 10.1016/j.cnsns.2008.03.010.  Google Scholar

[14]

E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[15]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[16]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[17]

A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.  doi: 10.1016/j.automatica.2013.05.030.  Google Scholar

[18]

L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.  doi: 10.1093/imamci/dnm028.  Google Scholar

[19]

Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.  doi: 10.1016/j.cnsns.2011.09.022.  Google Scholar

[20]

W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.  doi: 10.1016/j.jfranklin.2010.12.001.  Google Scholar

[21]

H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.  doi: 10.3934/jimo.2009.5.153.  Google Scholar

[22]

Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.  doi: 10.1016/j.amc.2011.11.057.  Google Scholar

[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[3]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[6]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[7]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[8]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[9]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[10]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[11]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[12]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[13]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[14]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[15]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[16]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[17]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[18]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[19]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[20]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]