-
Previous Article
An alternating direction method for solving a class of inverse semi-definite quadratic programming problems
- JIMO Home
- This Issue
-
Next Article
Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback
1. | Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi 10307, Vietnam, Vietnam |
2. | Université de Limoges, Laboratoire XLIM, 123, avenue Albert Thomas, 87060 Limoges CEDEX, France |
References:
[1] |
Automatica, 42 (2006), 337-342.
doi: 10.1016/j.automatica.2005.09.007. |
[2] |
Automatica, 49 (2013), 2546-2550.
doi: 10.1016/j.automatica.2013.04.004. |
[3] |
Automatica, 42 (2006), 183-188.
doi: 10.1016/j.automatica.2005.08.012. |
[4] |
SIAM, Philadelphia, PA, 1994.
doi: 10.1137/1.9781611970777. |
[5] |
In Proc IRE Int Convention Record, 4 (1961), 83-87. Google Scholar |
[6] |
International Journal of Control, 76 (2003), 48-60.
doi: 10.1080/0020717021000049151. |
[7] |
The MathWorks, Inc, 1995. Google Scholar |
[8] |
IEEE Transactions on Automatic Control, 54 (2009), 364-369.
doi: 10.1109/TAC.2008.2008325. |
[9] |
Journal of Industrial and Management Optimization, 10 (2014), 413-441. |
[10] |
Control Engineering. Birkhäuser/Springer, New York, 2013. |
[11] |
Journal of Optimization Theory and Applications, 137 (2008), 521-532.
doi: 10.1007/s10957-008-9357-7. |
[12] |
Nonlinear Analysis: Hybrid Systems, 6 (2012), 885-898.
doi: 10.1016/j.nahs.2012.03.001. |
[13] |
Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043-1049.
doi: 10.1016/j.cnsns.2008.03.010. |
[14] |
Systems and Control Letters, 57 (2008), 561-566.
doi: 10.1016/j.sysconle.2007.12.002. |
[15] |
Journal of Optimization Theory and Applications,151 (2011), 100-120.
doi: 10.1007/s10957-011-9858-7. |
[16] |
Journal of Optimization Theory and Applications, 151 (2011), 100-120.
doi: 10.1007/s10957-011-9858-7. |
[17] |
Automatica, 49 (2013), 2860-2866.
doi: 10.1016/j.automatica.2013.05.030. |
[18] |
IMA journal of mathematical control and information, 26 (2009), 23-44.
doi: 10.1093/imamci/dnm028. |
[19] |
Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766-1778.
doi: 10.1016/j.cnsns.2011.09.022. |
[20] |
Journal of the Franklin Institute, 348 (2011), 331-352.
doi: 10.1016/j.jfranklin.2010.12.001. |
[21] |
Journal of Industrial and Management Optimization, 5 (2009), 153-159.
doi: 10.3934/jimo.2009.5.153. |
[22] |
Applied Mathematics and Computation, 218 (2012), 5629-5640.
doi: 10.1016/j.amc.2011.11.057. |
show all references
References:
[1] |
Automatica, 42 (2006), 337-342.
doi: 10.1016/j.automatica.2005.09.007. |
[2] |
Automatica, 49 (2013), 2546-2550.
doi: 10.1016/j.automatica.2013.04.004. |
[3] |
Automatica, 42 (2006), 183-188.
doi: 10.1016/j.automatica.2005.08.012. |
[4] |
SIAM, Philadelphia, PA, 1994.
doi: 10.1137/1.9781611970777. |
[5] |
In Proc IRE Int Convention Record, 4 (1961), 83-87. Google Scholar |
[6] |
International Journal of Control, 76 (2003), 48-60.
doi: 10.1080/0020717021000049151. |
[7] |
The MathWorks, Inc, 1995. Google Scholar |
[8] |
IEEE Transactions on Automatic Control, 54 (2009), 364-369.
doi: 10.1109/TAC.2008.2008325. |
[9] |
Journal of Industrial and Management Optimization, 10 (2014), 413-441. |
[10] |
Control Engineering. Birkhäuser/Springer, New York, 2013. |
[11] |
Journal of Optimization Theory and Applications, 137 (2008), 521-532.
doi: 10.1007/s10957-008-9357-7. |
[12] |
Nonlinear Analysis: Hybrid Systems, 6 (2012), 885-898.
doi: 10.1016/j.nahs.2012.03.001. |
[13] |
Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043-1049.
doi: 10.1016/j.cnsns.2008.03.010. |
[14] |
Systems and Control Letters, 57 (2008), 561-566.
doi: 10.1016/j.sysconle.2007.12.002. |
[15] |
Journal of Optimization Theory and Applications,151 (2011), 100-120.
doi: 10.1007/s10957-011-9858-7. |
[16] |
Journal of Optimization Theory and Applications, 151 (2011), 100-120.
doi: 10.1007/s10957-011-9858-7. |
[17] |
Automatica, 49 (2013), 2860-2866.
doi: 10.1016/j.automatica.2013.05.030. |
[18] |
IMA journal of mathematical control and information, 26 (2009), 23-44.
doi: 10.1093/imamci/dnm028. |
[19] |
Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766-1778.
doi: 10.1016/j.cnsns.2011.09.022. |
[20] |
Journal of the Franklin Institute, 348 (2011), 331-352.
doi: 10.1016/j.jfranklin.2010.12.001. |
[21] |
Journal of Industrial and Management Optimization, 5 (2009), 153-159.
doi: 10.3934/jimo.2009.5.153. |
[22] |
Applied Mathematics and Computation, 218 (2012), 5629-5640.
doi: 10.1016/j.amc.2011.11.057. |
[1] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021036 |
[2] |
Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021010 |
[3] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[4] |
Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248 |
[5] |
Bingru Zhang, Chuanye Gu, Jueyou Li. Distributed convex optimization with coupling constraints over time-varying directed graphs†. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2119-2138. doi: 10.3934/jimo.2020061 |
[6] |
Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021027 |
[7] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[8] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[9] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[10] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[11] |
Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021086 |
[12] |
Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021072 |
[13] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[14] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021127 |
[15] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[16] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[17] |
Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 |
[18] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[19] |
Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021007 |
[20] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]