• Previous Article
    An alternating direction method for solving a class of inverse semi-definite quadratic programming problems
  • JIMO Home
  • This Issue
  • Next Article
    Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
January  2016, 12(1): 303-315. doi: 10.3934/jimo.2016.12.303

Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback

1. 

Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi 10307, Vietnam, Vietnam

2. 

Université de Limoges, Laboratoire XLIM, 123, avenue Albert Thomas, 87060 Limoges CEDEX, France

Received  November 2014 Revised  January 2015 Published  April 2015

This paper studies the robust finite-time $H_\infty$ control for a class of nonlinear systems with time-varying delay and disturbances via output feedback. Based on the Lyapunov functional method and a generalized Jensen integral inequality, novel delay-dependent conditions for the existence of output feedback controllers are established in terms of linear matrix inequalities (LMIs). The proposed conditions allow us to design the output feedback controllers which robustly stabilize the closed-loop system in the finite-time sense. An application to $H_\infty$ control of uncertain linear systems with interval time-varying delay is also given. A numerical example is given to illustrate the efficiency of the proposed method.
Citation: Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303
References:
[1]

F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.  doi: 10.1016/j.automatica.2005.09.007.  Google Scholar

[2]

F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[3]

E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.  doi: 10.1016/j.automatica.2005.08.012.  Google Scholar

[4]

S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[5]

P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83.   Google Scholar

[6]

E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.  doi: 10.1080/0020717021000049151.  Google Scholar

[7]

P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995).   Google Scholar

[8]

G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.  doi: 10.1109/TAC.2008.2008325.  Google Scholar

[9]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.   Google Scholar

[10]

V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).   Google Scholar

[11]

O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.  doi: 10.1007/s10957-008-9357-7.  Google Scholar

[12]

H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.  doi: 10.1016/j.nahs.2012.03.001.  Google Scholar

[13]

Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.  doi: 10.1016/j.cnsns.2008.03.010.  Google Scholar

[14]

E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[15]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[16]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[17]

A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.  doi: 10.1016/j.automatica.2013.05.030.  Google Scholar

[18]

L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.  doi: 10.1093/imamci/dnm028.  Google Scholar

[19]

Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.  doi: 10.1016/j.cnsns.2011.09.022.  Google Scholar

[20]

W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.  doi: 10.1016/j.jfranklin.2010.12.001.  Google Scholar

[21]

H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.  doi: 10.3934/jimo.2009.5.153.  Google Scholar

[22]

Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.  doi: 10.1016/j.amc.2011.11.057.  Google Scholar

show all references

References:
[1]

F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.  doi: 10.1016/j.automatica.2005.09.007.  Google Scholar

[2]

F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[3]

E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.  doi: 10.1016/j.automatica.2005.08.012.  Google Scholar

[4]

S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[5]

P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83.   Google Scholar

[6]

E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.  doi: 10.1080/0020717021000049151.  Google Scholar

[7]

P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995).   Google Scholar

[8]

G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.  doi: 10.1109/TAC.2008.2008325.  Google Scholar

[9]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.   Google Scholar

[10]

V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).   Google Scholar

[11]

O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.  doi: 10.1007/s10957-008-9357-7.  Google Scholar

[12]

H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.  doi: 10.1016/j.nahs.2012.03.001.  Google Scholar

[13]

Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.  doi: 10.1016/j.cnsns.2008.03.010.  Google Scholar

[14]

E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[15]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[16]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[17]

A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.  doi: 10.1016/j.automatica.2013.05.030.  Google Scholar

[18]

L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.  doi: 10.1093/imamci/dnm028.  Google Scholar

[19]

Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.  doi: 10.1016/j.cnsns.2011.09.022.  Google Scholar

[20]

W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.  doi: 10.1016/j.jfranklin.2010.12.001.  Google Scholar

[21]

H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.  doi: 10.3934/jimo.2009.5.153.  Google Scholar

[22]

Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.  doi: 10.1016/j.amc.2011.11.057.  Google Scholar

[1]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019050

[2]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[3]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[4]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[5]

Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020098

[6]

Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721

[7]

Li-Min Wang, Jing-Xian Yu, Jia Shi, Fu-Rong Gao. Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 11-23. doi: 10.3934/naco.2015.5.11

[8]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

[9]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[10]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[11]

M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365

[12]

Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[13]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[14]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[15]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[16]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019192

[17]

Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial & Management Optimization, 2009, 5 (1) : 153-159. doi: 10.3934/jimo.2009.5.153

[18]

Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463

[19]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[20]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]