August  2015, 20(6): 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

Partial differential equations with Robin boundary condition in online social networks

1. 

Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China, China

2. 

School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069, United States, United States

Received  February 2014 Revised  January 2015 Published  June 2015

In recent years, online social networks such as Twitter, have become a major source of information exchange and research on information diffusion in social networks has been accelerated. Partial differential equations are proposed to characterize temporal and spatial patterns of information diffusion over online social networks. The new modeling approach presents a new analytic framework towards quantifying information diffusion through the interplay of structural and topical influences. In this paper we develop a non-autonomous diffusive logistic model with indefinite weight and the Robin boundary condition to describe information diffusion in online social networks. It is validated with a real dataset from an online social network, Digg.com. The simulation shows that the logistic model with the Robin boundary condition is able to more accurately predict the density of influenced users. We study the bifurcation, stability of the diffusive logistic model with heterogeneity in distance. The bifurcation and stability results of the model information describe either information spreading or vanishing in online social networks.
Citation: Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609
References:
[1]

G. A. Afrouzi and K. J. Brown, On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions,, Proc. Amer. Math. Soc., 127 (1999), 125.  doi: 10.1090/S0002-9939-99-04561-X.  Google Scholar

[2]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications,, Nonlinear Anal., 32 (1998), 819.  doi: 10.1016/S0362-546X(97)00530-0.  Google Scholar

[3]

A. Barrat, M. Barthelemy and A. Vespignani, Dynamical Processes on Complex Networks,, Cambridge University Press, (2008).  doi: 10.1017/CBO9780511791383.  Google Scholar

[4]

F. Benevenuto, T. Rodrigues, M. Cha and V. Almeida, Characterizing user behavior in online social networks,, in Proceedings of ACM SIGCOMM International Measurement Conference, (2009), 49.  doi: 10.1145/1644893.1644900.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments,, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 293.  doi: 10.1017/S030821050001876X.  Google Scholar

[6]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley & Sons Ltd, (2003).  doi: 10.1002/0470871296.  Google Scholar

[7]

M. Cha, A. Mislove, B. Adams and K. Gummadi, Characterizing social cascades in Flickr,, in Proceeding WOSN '08 Proceedings of the First Workshop on Online Social Networks, (2008), 13.  doi: 10.1145/1397735.1397739.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations,, AMS, (1998).   Google Scholar

[9]

P. Hess, Periodic Parabolic Boundary Value Problems and Positivity,, Longman Scientific & Technical, (1991).   Google Scholar

[10]

R. Ghosh and K. Lerman, A framework for quantitative analysis of cascades on networks,, in ACM International Conference on Web Search and Data Mining, (2011), 665.  doi: 10.1145/1935826.1935917.  Google Scholar

[11]

A. Guille, H. Hacid, C. Favre and D. Zighed, Information diffusion in online social networks: A survey,, SIGMOD Record, 42 (2013), 17.  doi: 10.1145/2503792.2503797.  Google Scholar

[12]

E. L. Ince, Ordinary Differential Equation,, Dover, (1944).   Google Scholar

[13]

F. Jin, E. Dougherty, P. Saraf, Y. Cao and N. Ramakrishnan, Epidemiological modeling of news and rumors on Twitter,, in Proceedings of the 7th Workshop on Social Network Mining and Analysis, (2013).  doi: 10.1145/2501025.2501027.  Google Scholar

[14]

K. Kreith, Picone's identity and generalizations,, Rend. Mat., 8 (1975), 251.   Google Scholar

[15]

R. Kumar, J. Novak and A. Tomkins, Structure and evolution of online social networks,, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2006), 611.  doi: 10.1145/1150402.1150476.  Google Scholar

[16]

J. Langa, J. Robinson, A. Rodriguez-Bernal and A. Suarez, Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion,, SIAM J. Math. Anal., 40 (2009), 2179.  doi: 10.1137/080721790.  Google Scholar

[17]

J. A. Langa, A. R. Bernal and A. Suárez, On the long time behavior of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method,, J. Differential Equations, 249 (2010), 414.  doi: 10.1016/j.jde.2010.04.001.  Google Scholar

[18]

C. Lei, Z. Lin and H. Wang, The free boundary problem describing information diffusion in online social networks,, J. Differential Equations, 254 (2013), 1326.  doi: 10.1016/j.jde.2012.10.021.  Google Scholar

[19]

K. Lerman and R. Ghosh, Information contagion: An empirical study of spread of news on Digg and Twitter social networks,, in Proceedings of 4th International Conference on Weblogs and Social Media (ICWSM), (2010).   Google Scholar

[20]

J. D. Logan, Applied Partial Differential Equations,, Springer (2015)., (2015).   Google Scholar

[21]

Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics,, in Tutorials in Mathematical Biosciences. IV, (1922), 171.  doi: 10.1007/978-3-540-74331-6_5.  Google Scholar

[22]

A. Madzvamuse, E. A. Gaffney and P. K. Maini, Stability analysis of non-autonomous reaction-diffusion,, J. Math. Biol., 61 (2010), 133.  doi: 10.1007/s00285-009-0293-4.  Google Scholar

[23]

J. Mierczyn'ski, The principal spectrum for linear nonautonomous parabolic PDEs of second order: Basic properties,, J. Differential Equations, 168 (2000), 453.  doi: 10.1006/jdeq.2000.3893.  Google Scholar

[24]

S. Myers, C. Zhu and J. Leskovec, Information diffusion and external influence in networks,, KDD '12 Proceedings of the 18th ACM, (2012), 33.  doi: 10.1145/2339530.2339540.  Google Scholar

[25]

J. D. Murray, Mathematical Biology I. An Introduction,, Springer-Verlag, (2002).   Google Scholar

[26]

A. Nazir, S. Raza, D. Gupta, C.-N. Chuah and B. Krishnamurthy, Network level footprints of facebook applications,, in Proceedings of ACM SIGCOMM International Measurement Conference, (2009), 63.  doi: 10.1145/1644893.1644901.  Google Scholar

[27]

M. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[28]

M. E. J. Newman, Networks: An Introdution,, Oxford University Press, (2010).  doi: 10.1093/acprof:oso/9780199206650.001.0001.  Google Scholar

[29]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[30]

M. Picone, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine,, Ann. Scuola Norm. Sup. Pisa, 11 (1910).   Google Scholar

[31]

A. Rodriguez-Bernal and A. Vidal-López, Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problem,, Discrete Contin. Dyn. Syst., 18 (2007), 537.  doi: 10.3934/dcds.2007.18.537.  Google Scholar

[32]

A. Rodriguez-Bernal and A. Vidal-López, Extremal equilibria for reaction-diffusion equations in bounded domains and applications,, J. Differential Equations, 244 (2008), 2983.  doi: 10.1016/j.jde.2008.02.046.  Google Scholar

[33]

D. Romero, C. Tan and J. Ugander, On the Interplay between Social and Topical Structure,, Proc. 7th International AAAI Conference on Weblogs and Social Media (ICWSM), (2013).   Google Scholar

[34]

F. Schneider, A. Feldmann, B. Krishnamurthy and W. Willinger, Understanding online social network usage from a network perspective,, in Proceedings of ACM SIGCOMM International Measurement Conference, (2009), 35.  doi: 10.1145/1644893.1644899.  Google Scholar

[35]

H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Amer. Math. Soc., (1995).   Google Scholar

[36]

C. A. Swanson, Picone's identity,, Rend. Mat., 8 (1975), 373.   Google Scholar

[37]

S. Tang and N. Blenn, Christian Doerr and Piet Van Mieghem,, Digging in the Digg Social News Website, (2011).   Google Scholar

[38]

Q. Tang and Z. Lin, The asymptotic analysis of an insect dispersal model on a growing domain,, J. Math. Anal. Appl., 378 (2011), 649.  doi: 10.1016/j.jmaa.2011.01.057.  Google Scholar

[39]

Z. Tufekci, Big Data: Pitfalls, Methods and Concepts for an Emergent Field (March 7, 2013)., Available at SSRN: , ().  doi: 10.2139/ssrn.2229952.  Google Scholar

[40]

F. Wang, H. Wang and K. Xu, Diffusive logistic model towards predicting information diffusion in online social networks,, in 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW), (2012), 133.  doi: 10.1109/ICDCSW.2012.16.  Google Scholar

[41]

H. Wang, F. Wang and K. Xu, Modeling information diffusion in online social networks with partial differential equations,, , ().   Google Scholar

[42]

F. Wang, K. Xu and H. Wang, Discovering shared interests,, in 2012 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW), (2012), 163.   Google Scholar

[43]

F. Wang, H. Wang, K. Xu, J. Wu and J. Xia, Characterizing information diffusion in online social networks with linear diffusive model,, in 33nd International Conference on Distributed Computing Systems (ICDCS), (2013), 307.  doi: 10.1109/ICDCS.2013.14.  Google Scholar

[44]

J. Yang and S. Counts, Comparing Information Diffusion Structure in Weblogs and Microblogs,, 4th Int'l AAAI Conference on Weblogs and Social Media, (2010).   Google Scholar

[45]

J. Yang and J. Leskovec, Modeling information diffusion in implicit networks,, in 2010 IEEE 10th International Conference on Data Mining (ICDM), (2010), 599.  doi: 10.1109/ICDM.2010.22.  Google Scholar

[46]

B. Yu and H. Fei, Modeling Social Cascade in the Flickr Social Network,, Fuzzy Systems and Knowledge Discovery, (2009).  doi: 10.1109/FSKD.2009.719.  Google Scholar

[47]

, href=, ().   Google Scholar

[48]

, =, ().   Google Scholar

show all references

References:
[1]

G. A. Afrouzi and K. J. Brown, On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions,, Proc. Amer. Math. Soc., 127 (1999), 125.  doi: 10.1090/S0002-9939-99-04561-X.  Google Scholar

[2]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications,, Nonlinear Anal., 32 (1998), 819.  doi: 10.1016/S0362-546X(97)00530-0.  Google Scholar

[3]

A. Barrat, M. Barthelemy and A. Vespignani, Dynamical Processes on Complex Networks,, Cambridge University Press, (2008).  doi: 10.1017/CBO9780511791383.  Google Scholar

[4]

F. Benevenuto, T. Rodrigues, M. Cha and V. Almeida, Characterizing user behavior in online social networks,, in Proceedings of ACM SIGCOMM International Measurement Conference, (2009), 49.  doi: 10.1145/1644893.1644900.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments,, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 293.  doi: 10.1017/S030821050001876X.  Google Scholar

[6]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley & Sons Ltd, (2003).  doi: 10.1002/0470871296.  Google Scholar

[7]

M. Cha, A. Mislove, B. Adams and K. Gummadi, Characterizing social cascades in Flickr,, in Proceeding WOSN '08 Proceedings of the First Workshop on Online Social Networks, (2008), 13.  doi: 10.1145/1397735.1397739.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations,, AMS, (1998).   Google Scholar

[9]

P. Hess, Periodic Parabolic Boundary Value Problems and Positivity,, Longman Scientific & Technical, (1991).   Google Scholar

[10]

R. Ghosh and K. Lerman, A framework for quantitative analysis of cascades on networks,, in ACM International Conference on Web Search and Data Mining, (2011), 665.  doi: 10.1145/1935826.1935917.  Google Scholar

[11]

A. Guille, H. Hacid, C. Favre and D. Zighed, Information diffusion in online social networks: A survey,, SIGMOD Record, 42 (2013), 17.  doi: 10.1145/2503792.2503797.  Google Scholar

[12]

E. L. Ince, Ordinary Differential Equation,, Dover, (1944).   Google Scholar

[13]

F. Jin, E. Dougherty, P. Saraf, Y. Cao and N. Ramakrishnan, Epidemiological modeling of news and rumors on Twitter,, in Proceedings of the 7th Workshop on Social Network Mining and Analysis, (2013).  doi: 10.1145/2501025.2501027.  Google Scholar

[14]

K. Kreith, Picone's identity and generalizations,, Rend. Mat., 8 (1975), 251.   Google Scholar

[15]

R. Kumar, J. Novak and A. Tomkins, Structure and evolution of online social networks,, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2006), 611.  doi: 10.1145/1150402.1150476.  Google Scholar

[16]

J. Langa, J. Robinson, A. Rodriguez-Bernal and A. Suarez, Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion,, SIAM J. Math. Anal., 40 (2009), 2179.  doi: 10.1137/080721790.  Google Scholar

[17]

J. A. Langa, A. R. Bernal and A. Suárez, On the long time behavior of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method,, J. Differential Equations, 249 (2010), 414.  doi: 10.1016/j.jde.2010.04.001.  Google Scholar

[18]

C. Lei, Z. Lin and H. Wang, The free boundary problem describing information diffusion in online social networks,, J. Differential Equations, 254 (2013), 1326.  doi: 10.1016/j.jde.2012.10.021.  Google Scholar

[19]

K. Lerman and R. Ghosh, Information contagion: An empirical study of spread of news on Digg and Twitter social networks,, in Proceedings of 4th International Conference on Weblogs and Social Media (ICWSM), (2010).   Google Scholar

[20]

J. D. Logan, Applied Partial Differential Equations,, Springer (2015)., (2015).   Google Scholar

[21]

Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics,, in Tutorials in Mathematical Biosciences. IV, (1922), 171.  doi: 10.1007/978-3-540-74331-6_5.  Google Scholar

[22]

A. Madzvamuse, E. A. Gaffney and P. K. Maini, Stability analysis of non-autonomous reaction-diffusion,, J. Math. Biol., 61 (2010), 133.  doi: 10.1007/s00285-009-0293-4.  Google Scholar

[23]

J. Mierczyn'ski, The principal spectrum for linear nonautonomous parabolic PDEs of second order: Basic properties,, J. Differential Equations, 168 (2000), 453.  doi: 10.1006/jdeq.2000.3893.  Google Scholar

[24]

S. Myers, C. Zhu and J. Leskovec, Information diffusion and external influence in networks,, KDD '12 Proceedings of the 18th ACM, (2012), 33.  doi: 10.1145/2339530.2339540.  Google Scholar

[25]

J. D. Murray, Mathematical Biology I. An Introduction,, Springer-Verlag, (2002).   Google Scholar

[26]

A. Nazir, S. Raza, D. Gupta, C.-N. Chuah and B. Krishnamurthy, Network level footprints of facebook applications,, in Proceedings of ACM SIGCOMM International Measurement Conference, (2009), 63.  doi: 10.1145/1644893.1644901.  Google Scholar

[27]

M. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[28]

M. E. J. Newman, Networks: An Introdution,, Oxford University Press, (2010).  doi: 10.1093/acprof:oso/9780199206650.001.0001.  Google Scholar

[29]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[30]

M. Picone, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine,, Ann. Scuola Norm. Sup. Pisa, 11 (1910).   Google Scholar

[31]

A. Rodriguez-Bernal and A. Vidal-López, Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problem,, Discrete Contin. Dyn. Syst., 18 (2007), 537.  doi: 10.3934/dcds.2007.18.537.  Google Scholar

[32]

A. Rodriguez-Bernal and A. Vidal-López, Extremal equilibria for reaction-diffusion equations in bounded domains and applications,, J. Differential Equations, 244 (2008), 2983.  doi: 10.1016/j.jde.2008.02.046.  Google Scholar

[33]

D. Romero, C. Tan and J. Ugander, On the Interplay between Social and Topical Structure,, Proc. 7th International AAAI Conference on Weblogs and Social Media (ICWSM), (2013).   Google Scholar

[34]

F. Schneider, A. Feldmann, B. Krishnamurthy and W. Willinger, Understanding online social network usage from a network perspective,, in Proceedings of ACM SIGCOMM International Measurement Conference, (2009), 35.  doi: 10.1145/1644893.1644899.  Google Scholar

[35]

H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Amer. Math. Soc., (1995).   Google Scholar

[36]

C. A. Swanson, Picone's identity,, Rend. Mat., 8 (1975), 373.   Google Scholar

[37]

S. Tang and N. Blenn, Christian Doerr and Piet Van Mieghem,, Digging in the Digg Social News Website, (2011).   Google Scholar

[38]

Q. Tang and Z. Lin, The asymptotic analysis of an insect dispersal model on a growing domain,, J. Math. Anal. Appl., 378 (2011), 649.  doi: 10.1016/j.jmaa.2011.01.057.  Google Scholar

[39]

Z. Tufekci, Big Data: Pitfalls, Methods and Concepts for an Emergent Field (March 7, 2013)., Available at SSRN: , ().  doi: 10.2139/ssrn.2229952.  Google Scholar

[40]

F. Wang, H. Wang and K. Xu, Diffusive logistic model towards predicting information diffusion in online social networks,, in 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW), (2012), 133.  doi: 10.1109/ICDCSW.2012.16.  Google Scholar

[41]

H. Wang, F. Wang and K. Xu, Modeling information diffusion in online social networks with partial differential equations,, , ().   Google Scholar

[42]

F. Wang, K. Xu and H. Wang, Discovering shared interests,, in 2012 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW), (2012), 163.   Google Scholar

[43]

F. Wang, H. Wang, K. Xu, J. Wu and J. Xia, Characterizing information diffusion in online social networks with linear diffusive model,, in 33nd International Conference on Distributed Computing Systems (ICDCS), (2013), 307.  doi: 10.1109/ICDCS.2013.14.  Google Scholar

[44]

J. Yang and S. Counts, Comparing Information Diffusion Structure in Weblogs and Microblogs,, 4th Int'l AAAI Conference on Weblogs and Social Media, (2010).   Google Scholar

[45]

J. Yang and J. Leskovec, Modeling information diffusion in implicit networks,, in 2010 IEEE 10th International Conference on Data Mining (ICDM), (2010), 599.  doi: 10.1109/ICDM.2010.22.  Google Scholar

[46]

B. Yu and H. Fei, Modeling Social Cascade in the Flickr Social Network,, Fuzzy Systems and Knowledge Discovery, (2009).  doi: 10.1109/FSKD.2009.719.  Google Scholar

[47]

, href=, ().   Google Scholar

[48]

, =, ().   Google Scholar

[1]

Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837

[2]

Xiaofei Cao, Guowei Dai. Stability analysis of a model on varying domain with the Robin boundary condition. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 935-942. doi: 10.3934/dcdss.2017048

[3]

Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129

[4]

Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007

[5]

Robin Cohen, Alan Tsang, Krishna Vaidyanathan, Haotian Zhang. Analyzing opinion dynamics in online social networks. Big Data & Information Analytics, 2016, 1 (4) : 279-298. doi: 10.3934/bdia.2016011

[6]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[7]

Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253

[8]

Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255

[9]

Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95

[10]

Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240

[11]

Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221

[12]

Li Ma, Shangjiang Guo. Bifurcation and stability of a two-species diffusive Lotka-Volterra model. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1205-1232. doi: 10.3934/cpaa.2020056

[13]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[14]

Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436

[15]

Shijin Deng, Linglong Du, Shih-Hsien Yu. Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition. Kinetic & Related Models, 2013, 6 (4) : 865-882. doi: 10.3934/krm.2013.6.865

[16]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[17]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[18]

Xuejun Pan, Hongying Shu, Yuming Chen. Dirichlet problem for a diffusive logistic population model with two delays. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020134

[19]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[20]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]