January  2016, 36(1): 63-95. doi: 10.3934/dcds.2016.36.63

The general recombination equation in continuous time and its solution

1. 

Technische Fakultät, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany, Germany

2. 

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

Received  August 2014 Revised  March 2015 Published  June 2015

The process of recombination in population genetics, in its deterministic limit, leads to a nonlinear ODE in the Banach space of finite measures on a locally compact product space. It has an embedding into a larger family of nonlinear ODEs that permits a systematic analysis with lattice-theoretic methods for general partitions of finite sets. We discuss this type of system, reduce it to an equivalent finite-dimensional nonlinear problem, and establish a connection with an ancestral partitioning process, backward in time. We solve the finite-dimensional problem recursively for generic sets of parameters and briefly discuss the singular cases, and how to extend the solution to this situation.
Citation: Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63
References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997). doi: 10.1007/978-3-642-59101-3. Google Scholar

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995). Google Scholar

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037. Google Scholar

[4]

E. Baake and I. Herms, Single-crossover dynamics: Finite versus infinite populations,, Bull. Math. Biol., 70 (2008), 603. doi: 10.1007/s11538-007-9270-5. Google Scholar

[5]

M. Baake, Recombination semigroups on measure spaces,, Monatsh. Math., 146 (2005), 267. doi: 10.1007/s00605-005-0326-z. Google Scholar

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3. doi: 10.4153/CJM-2003-001-0. Google Scholar

[7]

E. Baake and T. Hustedt, Moment closure in a Moran model with recombination,, Markov Proc. Rel. Fields, 17 (2011), 429. Google Scholar

[8]

E. Baake and U. von Wangenheim, Single-crossover recombination and ancestral recombination trees,, J. Math. Biol., 68 (2014), 1371. doi: 10.1007/s00285-013-0662-x. Google Scholar

[9]

M. Baake and R. Speicher, in, preparation., (). Google Scholar

[10]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311. Google Scholar

[11]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000). Google Scholar

[12]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1. doi: 10.1006/tpbi.2000.1471. Google Scholar

[13]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115. doi: 10.1016/S0024-3795(01)00586-9. Google Scholar

[14]

R. Durrett, Probability Models for DNA Sequence Evolution,, 2nd ed., (2008). doi: 10.1007/978-0-387-78168-6. Google Scholar

[15]

M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination,, submitted, (). Google Scholar

[16]

W. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems,, Genetics, 87 (1977), 807. Google Scholar

[17]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. I, (1986). doi: 10.1063/1.3062516. Google Scholar

[18]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25. doi: 10.1214/aoms/1177731313. Google Scholar

[19]

Y. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992). doi: 10.1007/978-3-642-76211-6. Google Scholar

[20]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103. doi: 10.1007/s002850050143. Google Scholar

[21]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998). Google Scholar

[22]

O. Redner and M. Baake, Unequal crossover dynamics in discrete and continuous time,, J. Math. Biol., 49 (2004), 201. doi: 10.1007/s00285-004-0273-7. Google Scholar

[23]

N. J. A. Sloane, The On-line encyclopedia of integer sequences,, Lecture Notes in Computer Science, 4573 (2007). doi: 10.1007/978-3-540-73086-6_12. Google Scholar

[24]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction,, IEEE Trans. Automatic Control, 46 (2001), 1028. doi: 10.1109/9.935056. Google Scholar

[25]

E. Spiegel and C. J. O'Donnell, Incidence Algebras,, Marcel Dekker, (1997). Google Scholar

[26]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727. doi: 10.1007/s00285-009-0277-4. Google Scholar

show all references

References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997). doi: 10.1007/978-3-642-59101-3. Google Scholar

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995). Google Scholar

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037. Google Scholar

[4]

E. Baake and I. Herms, Single-crossover dynamics: Finite versus infinite populations,, Bull. Math. Biol., 70 (2008), 603. doi: 10.1007/s11538-007-9270-5. Google Scholar

[5]

M. Baake, Recombination semigroups on measure spaces,, Monatsh. Math., 146 (2005), 267. doi: 10.1007/s00605-005-0326-z. Google Scholar

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3. doi: 10.4153/CJM-2003-001-0. Google Scholar

[7]

E. Baake and T. Hustedt, Moment closure in a Moran model with recombination,, Markov Proc. Rel. Fields, 17 (2011), 429. Google Scholar

[8]

E. Baake and U. von Wangenheim, Single-crossover recombination and ancestral recombination trees,, J. Math. Biol., 68 (2014), 1371. doi: 10.1007/s00285-013-0662-x. Google Scholar

[9]

M. Baake and R. Speicher, in, preparation., (). Google Scholar

[10]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311. Google Scholar

[11]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000). Google Scholar

[12]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1. doi: 10.1006/tpbi.2000.1471. Google Scholar

[13]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115. doi: 10.1016/S0024-3795(01)00586-9. Google Scholar

[14]

R. Durrett, Probability Models for DNA Sequence Evolution,, 2nd ed., (2008). doi: 10.1007/978-0-387-78168-6. Google Scholar

[15]

M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination,, submitted, (). Google Scholar

[16]

W. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems,, Genetics, 87 (1977), 807. Google Scholar

[17]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. I, (1986). doi: 10.1063/1.3062516. Google Scholar

[18]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25. doi: 10.1214/aoms/1177731313. Google Scholar

[19]

Y. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992). doi: 10.1007/978-3-642-76211-6. Google Scholar

[20]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103. doi: 10.1007/s002850050143. Google Scholar

[21]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998). Google Scholar

[22]

O. Redner and M. Baake, Unequal crossover dynamics in discrete and continuous time,, J. Math. Biol., 49 (2004), 201. doi: 10.1007/s00285-004-0273-7. Google Scholar

[23]

N. J. A. Sloane, The On-line encyclopedia of integer sequences,, Lecture Notes in Computer Science, 4573 (2007). doi: 10.1007/978-3-540-73086-6_12. Google Scholar

[24]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction,, IEEE Trans. Automatic Control, 46 (2001), 1028. doi: 10.1109/9.935056. Google Scholar

[25]

E. Spiegel and C. J. O'Donnell, Incidence Algebras,, Marcel Dekker, (1997). Google Scholar

[26]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727. doi: 10.1007/s00285-009-0277-4. Google Scholar

[1]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[2]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[3]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[4]

Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269

[5]

Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821

[6]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020041

[7]

Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 617-641. doi: 10.3934/dcds.2010.27.617

[8]

Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 643-655. doi: 10.3934/dcds.2010.27.643

[9]

Ellen Baake, Michael Baake, Majid Salamat. Erratum and addendum to: The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2365-2366. doi: 10.3934/dcds.2016.36.2365

[10]

Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467

[11]

Ellen Baake, Michael Baake. Haldane linearisation done right: Solving the nonlinear recombination equation the easy way. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6645-6656. doi: 10.3934/dcds.2016088

[12]

Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883

[13]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[14]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[15]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

[16]

Yingli Pan, Ying Su, Junjie Wei. Bistable waves of a recursive system arising from seasonal age-structured population models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 511-528. doi: 10.3934/dcdsb.2018184

[17]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[18]

Vitali Liskevich, Igor I. Skrypnik, Zeev Sobol. Estimates of solutions for the parabolic $p$-Laplacian equation with measure via parabolic nonlinear potentials. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1731-1744. doi: 10.3934/cpaa.2013.12.1731

[19]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[20]

Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]