March  2016, 36(3): 1143-1157. doi: 10.3934/dcds.2016.36.1143

An improved Hardy inequality for a nonlocal operator

1. 

Laboratoire D'Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques, Faculté des sciences, Université About Baker Belkad, Tlemcen 13000, Algeria

2. 

Centro de Modelamiento Matemático (CMM), Universidad de Chile, Beauchef 851, Santiago, Chile

Received  January 2015 Revised  June 2015 Published  August 2015

Let $0 < s < 1$ and $1< p < 2$ be such that $ps < N$ and let $\Omega$ be a bounded domain containing the origin. In this paper we prove the following improved Hardy inequality:
    Given $1 \le q < p$, there exists a positive constant $C\equiv C(\Omega, q, N, s)$ such that $$ \int\limits_{\mathbb{R}^N}\int\limits_{\mathbb{R}^N} \, \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}\,dx\,dy - \Lambda_{N,p,s} \int\limits_{\mathbb{R}^N} \frac{|u(x)|^p}{|x|^{ps}}\,dx$$$$\geq C \int\limits_{\Omega}\int\limits_{\Omega}\frac{|u(x)-u(y)|^p}{|x-y|^{N+qs}}dxdy $$ for all $u \in \mathcal{C}_0^\infty({\Omega})$. Here $\Lambda_{N,p,s}$ is the optimal constant in the Hardy inequality (1.1).
Citation: Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143
References:
[1]

B. Abdellaoui and R. Bentiffour, Caffarelli-Kohn-Nirenberg type inequalities of fractional order and applications,, submitted., ().   Google Scholar

[2]

B. Abdellaoui, I. Peral and A. Primo, A remark on the fractional Hardy inequality with a remainder term,, C. R. Acad. Sci. Paris, 352 (2014), 299.  doi: 10.1016/j.crma.2014.02.003.  Google Scholar

[3]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[4]

F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, J. Amer. Math. Soc., 2 (1989), 683.  doi: 10.1090/S0894-0347-1989-1002633-4.  Google Scholar

[5]

B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential,, Communications in Contemporary Mathematics, 16 (2014).  doi: 10.1142/S0219199713500466.  Google Scholar

[6]

B. Barrios, I. Peral and S. Vita, Some remarks about the summability of nonlocal nonlinear problems,, Adv. Nonlinear Anal., 4 (2015), 91.  doi: 10.1515/anona-2015-0012.  Google Scholar

[7]

H. Brezis, L. Dupaigne and A. Tesei, On a semilinear equation with inverse-square potential,, Selecta Math., 11 (2005), 1.  doi: 10.1007/s00029-005-0003-z.  Google Scholar

[8]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbbR^N$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[9]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259.   Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

A. Di castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities,, J. Funct. Anal., 267 (2014), 1807.  doi: 10.1016/j.jfa.2014.05.023.  Google Scholar

[12]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.  doi: 10.1080/03605308208820218.  Google Scholar

[14]

M. M. Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential,, preprint, ().   Google Scholar

[15]

F. Ferrari and I. Verbitsky, Radial fractional Laplace operators and Hessian inequalities,, J. Differential Equations, 253 (2012), 244.  doi: 10.1016/j.jde.2012.03.024.  Google Scholar

[16]

R. Frank, A simple proof of Hardy-Lieb-Thirring inequalities,, Comm. Math. Phys., 290 (2009), 789.  doi: 10.1007/s00220-009-0759-7.  Google Scholar

[17]

R. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators,, Journal of the American Mathematical Society, 21 (2008), 925.  doi: 10.1090/S0894-0347-07-00582-6.  Google Scholar

[18]

R. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities,, Journal of Functional Analysis, 255 (2008), 3407.  doi: 10.1016/j.jfa.2008.05.015.  Google Scholar

[19]

L. Grafakos, Classical Fourier Analysis, Third edition,, Graduate Texts in Mathematics, 249 (2014).  doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$,, Commun. Math. Phys., 53 (1977), 285.   Google Scholar

[21]

J. Heinonen, T. Kilpelinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Dover Publications, (2006).   Google Scholar

[22]

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations,, Discrete and Continuous Dynamical Systems, 35 (2015), 6031.  doi: 10.3934/dcds.2015.35.6031.  Google Scholar

[23]

E. H. Lieb and M. Loss, Analysis, Second edition,, Graduate Studies in Mathematics, 14 (2001).  doi: 10.1090/gsm/014.  Google Scholar

[24]

P. Lindqvist, On the equation $\D_p u+ \lambda |u|^{p-2}u =0$,, Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[25]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Second edition, 342 (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

show all references

References:
[1]

B. Abdellaoui and R. Bentiffour, Caffarelli-Kohn-Nirenberg type inequalities of fractional order and applications,, submitted., ().   Google Scholar

[2]

B. Abdellaoui, I. Peral and A. Primo, A remark on the fractional Hardy inequality with a remainder term,, C. R. Acad. Sci. Paris, 352 (2014), 299.  doi: 10.1016/j.crma.2014.02.003.  Google Scholar

[3]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[4]

F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous,, J. Amer. Math. Soc., 2 (1989), 683.  doi: 10.1090/S0894-0347-1989-1002633-4.  Google Scholar

[5]

B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential,, Communications in Contemporary Mathematics, 16 (2014).  doi: 10.1142/S0219199713500466.  Google Scholar

[6]

B. Barrios, I. Peral and S. Vita, Some remarks about the summability of nonlocal nonlinear problems,, Adv. Nonlinear Anal., 4 (2015), 91.  doi: 10.1515/anona-2015-0012.  Google Scholar

[7]

H. Brezis, L. Dupaigne and A. Tesei, On a semilinear equation with inverse-square potential,, Selecta Math., 11 (2005), 1.  doi: 10.1007/s00029-005-0003-z.  Google Scholar

[8]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbbR^N$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[9]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259.   Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

A. Di castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities,, J. Funct. Anal., 267 (2014), 1807.  doi: 10.1016/j.jfa.2014.05.023.  Google Scholar

[12]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.  doi: 10.1080/03605308208820218.  Google Scholar

[14]

M. M. Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential,, preprint, ().   Google Scholar

[15]

F. Ferrari and I. Verbitsky, Radial fractional Laplace operators and Hessian inequalities,, J. Differential Equations, 253 (2012), 244.  doi: 10.1016/j.jde.2012.03.024.  Google Scholar

[16]

R. Frank, A simple proof of Hardy-Lieb-Thirring inequalities,, Comm. Math. Phys., 290 (2009), 789.  doi: 10.1007/s00220-009-0759-7.  Google Scholar

[17]

R. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators,, Journal of the American Mathematical Society, 21 (2008), 925.  doi: 10.1090/S0894-0347-07-00582-6.  Google Scholar

[18]

R. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities,, Journal of Functional Analysis, 255 (2008), 3407.  doi: 10.1016/j.jfa.2008.05.015.  Google Scholar

[19]

L. Grafakos, Classical Fourier Analysis, Third edition,, Graduate Texts in Mathematics, 249 (2014).  doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$,, Commun. Math. Phys., 53 (1977), 285.   Google Scholar

[21]

J. Heinonen, T. Kilpelinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Dover Publications, (2006).   Google Scholar

[22]

T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations,, Discrete and Continuous Dynamical Systems, 35 (2015), 6031.  doi: 10.3934/dcds.2015.35.6031.  Google Scholar

[23]

E. H. Lieb and M. Loss, Analysis, Second edition,, Graduate Studies in Mathematics, 14 (2001).  doi: 10.1090/gsm/014.  Google Scholar

[24]

P. Lindqvist, On the equation $\D_p u+ \lambda |u|^{p-2}u =0$,, Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[25]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Second edition, 342 (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[1]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[2]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[3]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[4]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[5]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[6]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[7]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[8]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[9]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[10]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[11]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[12]

Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373

[13]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[14]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[15]

Boumediene Abdellaoui, Ahmed Attar, Abdelrazek Dieb, Ireneo Peral. Attainability of the fractional hardy constant with nonlocal mixed boundary conditions: Applications. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 5963-5991. doi: 10.3934/dcds.2018131

[16]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[17]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[18]

Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018

[19]

Jinrong Wang, Michal Fečkan, Yong Zhou. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 471-486. doi: 10.3934/eect.2017024

[20]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]