`a`
()
 

Matter-wave solitons with a minimal number of particles in a time-modulated quasi-periodic potential

Pages: 169 - 175, Volume 2015, Issue special, November 2015      doi:10.3934/proc.2015.0169

 
       Abstract        References        Full Text (524.0K)              Related Articles       

Gennadiy Burlak - CIICAp, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor., México, CP 62209, Mexico (email)
Salomon García-Paredes - CIICAp, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor., México, CP 62209, Mexico (email)

Abstract: The two-dimensional (2D) matter-wave soliton families supported by an external potential are systematically studied, in a vicinity of the junction between stable and unstable branches of the families. In this case the norm of the solution attains a minimum, facilitating the creation of such excitation. We study the dynamics and stability boundaries for fundamental solitons in a 2D self-attracting Bose-Einstein condensate (BEC), trapped in an quasiperiodic optical lattice (OL), with the amplitude subject to periodic time modulation.

Keywords:  Nonlinear waves, solitons, stability, decay, numerical simulations.
Mathematics Subject Classification:  Primary: 35C08, 35C99; Secondary: 65N99.

Received: September 2014;      Revised: February 2015;      Available Online: November 2015.

 References