# American Institute of Mathematical Sciences

July  2016, 36(7): 3545-3601. doi: 10.3934/dcds.2016.36.3545

## Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems

 1 Dept. Matemàtiques, secció ETSEIB, UPC, Avda. Diagonal 647, Barcelona, 08028, Spain, Spain

Received  February 2015 Revised  January 2016 Published  March 2016

In this paper we study the Sotomayor-Teixeira regularization of a general visible fold singularity of a planar Filippov system. Extending Geometric Fenichel Theory beyond the fold with asymptotic methods, we determine the deviation of the orbits of the regularized system from the generalized solutions of the Filippov one. This result is applied to the regularization of global sliding bifurcations as the Grazing-Sliding of periodic orbits and the Sliding Homoclinic to a Saddle, as well as to some classical problems in dry friction.
Roughly speaking, we see that locally, and also globally, the regularization of the bifurcations preserve the topological features of the sliding ones.
Citation: Carles Bonet-Revés, Tere M-Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3545-3601. doi: 10.3934/dcds.2016.36.3545
##### References:
 [1] C. Bonet, Singular perturbation of relaxed periodic orbits, J. Differential Equations, 66 (1987), 301-339. doi: 10.1016/0022-0396(87)90024-6.  Google Scholar [2] C. A. Buzzi, P. R. da Silva and M. A. Teixeira, A singular approach to discontinous vector fields on the plane, Journal of Differential Equations, 231 (2006), 633-655. The geometry of differential equations and dynamical systems. doi: 10.1016/j.jde.2006.08.017.  Google Scholar [3] J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New York, 1981.  Google Scholar [4] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems, Applied Mathematical Sciences, Springer-Verlag London Ltd., London, 2008. Theory and applications. Google Scholar [5] F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), x+100pp. With an appendix by Cheng Zhi Li. doi: 10.1090/memo/0577.  Google Scholar [6] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.  Google Scholar [7] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, vol. 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar [8] J. Giné and D. Peralta-Salas, Existence of inverse integrating factors and Lie symmetries for degenerate planar centers, J. Differential Equations, 252 (2012), 344-357. doi: 10.1016/j.jde.2011.08.044.  Google Scholar [9] M. Guardia, T. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, J. Differential Equations, 250 (2011), 1967-2023. doi: 10.1016/j.jde.2010.11.016.  Google Scholar [10] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York-London, 1966.  Google Scholar [11] C. K. R. T. Jones, Geometric singular perturbation theory, In Dynamical systems (Montecatini Terme, 1994), vol. 1609 of Lecture Notes in Math. Springer, Berlin, 1995, 44-118. doi: 10.1007/BFb0095239.  Google Scholar [12] T. J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems, In Analyzing multiscale phenomena using singular perturbation methods (Baltimore, MD, 1998), vol. 56 of Proc. Sympos. Appl. Math. Amer. Math. Soc., Providence, RI, 1999, 85-131. doi: 10.1090/psapm/056/1718893.  Google Scholar [13] K. U. Kristiansen and S. J. Hogan, On the use of blowup to study regularizations of singularities of piecewise smooth dynamical systems in $\mathbbR^3$, SIAM J. Appl. Dyn. Syst., 14 (2015), 382-422. doi: 10.1137/140980995.  Google Scholar [14] M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286-314. doi: 10.1137/S0036141099360919.  Google Scholar [15] M. Krupa and P. Szmolyan, Geometric analysis of the singularly perturbed planar fold, In Multiple-time-scale dynamical systems (Minneapolis, MN, 1997), vol. 122 of IMA Vol. Math. Appl., Springer, New York, 2001, 89-116. doi: 10.1007/978-1-4613-0117-2_4.  Google Scholar [16] M. Kunze, Non-smooth Dynamical Systems, vol. 1744 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103843.  Google Scholar [17] Y. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188. doi: 10.1142/S0218127403007874.  Google Scholar [18] R. I. Leine, Bifurcations in Discontinuous Mechanical Systems of Filippov-type, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Dr.)-Technische Universiteit Eindhoven (The Netherlands).  Google Scholar [19] R. I. Leine, D. H. Van Campen and B. L. Van de Vrande, Bifurcations in nonlinear discontinuous systems, Nonlinear Dynam., 23 (2000), 105-164. doi: 10.1023/A:1008384928636.  Google Scholar [20] L. Mazzi and M. Sabatini, A characterization of centres via first integrals, J. Differential Equations, 76 (1988), 222-237. doi: 10.1016/0022-0396(88)90072-1.  Google Scholar [21] E. F. Mishchenko and N. K. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, vol. 13 of Mathematical Concepts and Methods in Science and Engineering, Plenum Press, New York, 1980. Translated from the Russian by F. M. C. Goodspeed. doi: 10.1007/978-1-4615-9047-7.  Google Scholar [22] J. Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc., 289 (1985), 431-469. doi: 10.1090/S0002-9947-1985-0783998-8.  Google Scholar [23] J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, In International Conference on Differential Equations (Lisboa, 1995). World Sci. Publ., River Edge, NJ, 1998, 207-223.  Google Scholar [24] P. Szmolyan and M. Wechselberger, Canards in $\mathbbR^3$, J. Differential Equations, 177 (2001), 419-453. doi: 10.1006/jdeq.2001.4001.  Google Scholar [25] M. A. Teixeira and P. R. da Silva, Regularization and singular perturbation techniques for non-smooth systems, Phys. D, 241 (2012), 1948-1955. doi: 10.1016/j.physd.2011.06.022.  Google Scholar [26] V. I Utkin, Sliding Modes in Control and Optimization, Communications and Control Engineering Series. Springer-Verlag, Berlin, 1992. Translated and revised from the 1981 Russian original. doi: 10.1007/978-3-642-84379-2.  Google Scholar

show all references

##### References:
 [1] C. Bonet, Singular perturbation of relaxed periodic orbits, J. Differential Equations, 66 (1987), 301-339. doi: 10.1016/0022-0396(87)90024-6.  Google Scholar [2] C. A. Buzzi, P. R. da Silva and M. A. Teixeira, A singular approach to discontinous vector fields on the plane, Journal of Differential Equations, 231 (2006), 633-655. The geometry of differential equations and dynamical systems. doi: 10.1016/j.jde.2006.08.017.  Google Scholar [3] J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New York, 1981.  Google Scholar [4] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems, Applied Mathematical Sciences, Springer-Verlag London Ltd., London, 2008. Theory and applications. Google Scholar [5] F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), x+100pp. With an appendix by Cheng Zhi Li. doi: 10.1090/memo/0577.  Google Scholar [6] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.  Google Scholar [7] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, vol. 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar [8] J. Giné and D. Peralta-Salas, Existence of inverse integrating factors and Lie symmetries for degenerate planar centers, J. Differential Equations, 252 (2012), 344-357. doi: 10.1016/j.jde.2011.08.044.  Google Scholar [9] M. Guardia, T. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, J. Differential Equations, 250 (2011), 1967-2023. doi: 10.1016/j.jde.2010.11.016.  Google Scholar [10] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York-London, 1966.  Google Scholar [11] C. K. R. T. Jones, Geometric singular perturbation theory, In Dynamical systems (Montecatini Terme, 1994), vol. 1609 of Lecture Notes in Math. Springer, Berlin, 1995, 44-118. doi: 10.1007/BFb0095239.  Google Scholar [12] T. J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems, In Analyzing multiscale phenomena using singular perturbation methods (Baltimore, MD, 1998), vol. 56 of Proc. Sympos. Appl. Math. Amer. Math. Soc., Providence, RI, 1999, 85-131. doi: 10.1090/psapm/056/1718893.  Google Scholar [13] K. U. Kristiansen and S. J. Hogan, On the use of blowup to study regularizations of singularities of piecewise smooth dynamical systems in $\mathbbR^3$, SIAM J. Appl. Dyn. Syst., 14 (2015), 382-422. doi: 10.1137/140980995.  Google Scholar [14] M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286-314. doi: 10.1137/S0036141099360919.  Google Scholar [15] M. Krupa and P. Szmolyan, Geometric analysis of the singularly perturbed planar fold, In Multiple-time-scale dynamical systems (Minneapolis, MN, 1997), vol. 122 of IMA Vol. Math. Appl., Springer, New York, 2001, 89-116. doi: 10.1007/978-1-4613-0117-2_4.  Google Scholar [16] M. Kunze, Non-smooth Dynamical Systems, vol. 1744 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103843.  Google Scholar [17] Y. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188. doi: 10.1142/S0218127403007874.  Google Scholar [18] R. I. Leine, Bifurcations in Discontinuous Mechanical Systems of Filippov-type, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Dr.)-Technische Universiteit Eindhoven (The Netherlands).  Google Scholar [19] R. I. Leine, D. H. Van Campen and B. L. Van de Vrande, Bifurcations in nonlinear discontinuous systems, Nonlinear Dynam., 23 (2000), 105-164. doi: 10.1023/A:1008384928636.  Google Scholar [20] L. Mazzi and M. Sabatini, A characterization of centres via first integrals, J. Differential Equations, 76 (1988), 222-237. doi: 10.1016/0022-0396(88)90072-1.  Google Scholar [21] E. F. Mishchenko and N. K. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, vol. 13 of Mathematical Concepts and Methods in Science and Engineering, Plenum Press, New York, 1980. Translated from the Russian by F. M. C. Goodspeed. doi: 10.1007/978-1-4615-9047-7.  Google Scholar [22] J. Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc., 289 (1985), 431-469. doi: 10.1090/S0002-9947-1985-0783998-8.  Google Scholar [23] J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, In International Conference on Differential Equations (Lisboa, 1995). World Sci. Publ., River Edge, NJ, 1998, 207-223.  Google Scholar [24] P. Szmolyan and M. Wechselberger, Canards in $\mathbbR^3$, J. Differential Equations, 177 (2001), 419-453. doi: 10.1006/jdeq.2001.4001.  Google Scholar [25] M. A. Teixeira and P. R. da Silva, Regularization and singular perturbation techniques for non-smooth systems, Phys. D, 241 (2012), 1948-1955. doi: 10.1016/j.physd.2011.06.022.  Google Scholar [26] V. I Utkin, Sliding Modes in Control and Optimization, Communications and Control Engineering Series. Springer-Verlag, Berlin, 1992. Translated and revised from the 1981 Russian original. doi: 10.1007/978-3-642-84379-2.  Google Scholar
 [1] Zuowei Cai, Jianhua Huang, Liu Yang, Lihong Huang. Periodicity and stabilization control of the delayed Filippov system with perturbation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1439-1467. doi: 10.3934/dcdsb.2019235 [2] Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807 [3] Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025 [4] D. J. W. Simpson. On the stability of boundary equilibria in Filippov systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021097 [5] Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control & Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016 [6] Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241 [7] Ruyuan Zhang. Hopf bifurcations of ODE systems along the singular direction in the parameter plane. Communications on Pure & Applied Analysis, 2005, 4 (2) : 445-461. doi: 10.3934/cpaa.2005.4.445 [8] Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019 [9] Zongming Guo, Juncheng Wei. Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (4) : 765-786. doi: 10.3934/cpaa.2008.7.765 [10] Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 [11] Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211 [12] Xiangtuan Xiong, Jinmei Li, Jin Wen. Some novel linear regularization methods for a deblurring problem. Inverse Problems & Imaging, 2017, 11 (2) : 403-426. doi: 10.3934/ipi.2017019 [13] Stefan Kindermann, Antonio Leitão. Convergence rates for Kaczmarz-type regularization methods. Inverse Problems & Imaging, 2014, 8 (1) : 149-172. doi: 10.3934/ipi.2014.8.149 [14] Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks & Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241 [15] John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001 [16] Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783 [17] Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050 [18] Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021076 [19] Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i [20] Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

2020 Impact Factor: 1.392