• Previous Article
    A matrix-valued generator $\mathcal{A}$ with strong boundary coupling: A critical subspace of $D((-\mathcal{A})^{\frac{1}{2}})$ and $D((-\mathcal{A}^*)^{\frac{1}{2}})$ and implications
  • EECT Home
  • This Issue
  • Next Article
    The energy conservation for weak solutions to the relativistic Nordström-Vlasov system
March  2016, 5(1): 147-184. doi: 10.3934/eect.2016.5.147

Hölder-estimates for non-autonomous parabolic problems with rough data

1. 

Technische Universität Darmstadt, Fachbereich Mathematik, Dolivostr. 15, D-64293 Darmstadt, Germany

2. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Germany

Received  March 2015 Revised  February 2016 Published  March 2016

In this paper we establish Hölder estimates for solutions to nonautonomous parabolic equations on non-smooth domains which are complemented with mixed boundary conditions. The corresponding elliptic operators are of divergence type, the coefficient matrix of which depends only measurably on time. These results are in the tradition of the classical book of Ladyshenskaya et al. [40], which also serves as the starting point for our investigations.
Citation: Hannes Meinlschmidt, Joachim Rehberg. Hölder-estimates for non-autonomous parabolic problems with rough data. Evolution Equations & Control Theory, 2016, 5 (1) : 147-184. doi: 10.3934/eect.2016.5.147
References:
[1]

H. Amann, Parabolic evolution equations and nonlinear boundary conditions,, J. Differ. Equations, 72 (1988), 201.  doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems,, in: Function spaces, 133 (1993), 9.  doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

H. Amann, Maximal regularity for nonautonomous evolution equations,, Adv. Nonlinear Stud., 4 (2004), 417.   Google Scholar

[4]

H. Amann, Linear and Quasilinear Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[5]

W. Arendt, D. Dier, H. Laasri and E. M. Ouhabaz, Maximal regularity for evolution equations governed by non-autonomous forms,, Adv. Differential Equations, 19 (2014), 1043.   Google Scholar

[6]

P. Auscher, N. Badr, R. Haller-Dintelmann and J. Rehberg, The square root problem for second order, divergence form operators with mixed boundary conditions on $L^p$,, J. Evol. Eq., 15 (2015), 165.  doi: 10.1007/s00028-014-0255-1.  Google Scholar

[7]

C. Bennett and R. Sharpley, Interpolation of Operators,, Academic Press, (1988).   Google Scholar

[8]

K. Brewster, D. Mitrea, I. Mitrea and M. Mitrea, Extending Sobolev functions with partially vanishing traces from locally $(\epsilon,\delta)$-domains and applications to mixed boundary problems,, J. Funct. Anal., 266 (2014), 4314.  doi: 10.1016/j.jfa.2014.02.001.  Google Scholar

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011).  doi: 10.1007/978-0-387-70914-7.  Google Scholar

[10]

E. Casas, J. C. de los Reyes and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints,, SIAM J. Control Optim., 19 (2008), 616.  doi: 10.1137/07068240X.  Google Scholar

[11]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North Holland, (1978).   Google Scholar

[12]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I,, Springer-Verlag, (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[13]

J. C. de los Reyes, P. Merino, J. Rehberg and F. Tröltzsch, Optimality conditions for state-constrained PDE control problems with time-dependent controls,, Control Cybernet., 37 (2008), 5.   Google Scholar

[14]

D. Dier, Non-autonomous maximal regularity for forms of bounded variation,, J. Math. Anal. Appl., 425 (2015), 33.  doi: 10.1016/j.jmaa.2014.12.006.  Google Scholar

[15]

K. Disser, H.-C. Kaiser and J. Rehberg, Optimal Sobolev regularity for linear second-order divergence elliptic operators occuring in real-world problems,, SIAM J. Math. Anal., 47 (2015), 1719.  doi: 10.1137/140982969.  Google Scholar

[16]

J. Elschner, J. Rehberg and G. Schmidt, Optimal regularity for elliptic transmission problems including $C^1$ interfaces,, Interfaces Free Bound., 9 (2007), 233.  doi: 10.4171/IFB/163.  Google Scholar

[17]

A. F. M. ter Elst and J. Rehberg, Hölder estimates for second-order operators on domains with rough boundary,, Adv. Differential Equations, 20 (2015), 299.   Google Scholar

[18]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in advanced mathematics, (1992).   Google Scholar

[19]

I. Fonseca and G. Parry, Equilibrium configurations of defective crystals,, Arch. Rat. Mech. Anal., 120 (1992), 245.  doi: 10.1007/BF00375027.  Google Scholar

[20]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen,, Akademie-Verlag, (1974).   Google Scholar

[21]

Ch. Gallarati and M. Veraar, Maximal regularity for non-autonomous equations with measurable dependence on time,, , ().   Google Scholar

[22]

M. Giaquinta and M. Struwe, An optimal regularity result for a class of quasilinear parabolic systems,, Manuscr. Math., 36 (1981), 223.  doi: 10.1007/BF01170135.  Google Scholar

[23]

E. Giusti, Metodi Diretti nel Calcolo Delle Variazioni,, Unione Matematica Italiana, (1994).   Google Scholar

[24]

J. A. Griepentrog, W. Höppner, H.-C. Kaiser and J. Rehberg, A bi-Lipschitz continuous, volume preserving map from the unit ball onto a cube,, Note Mat., 28 (2008), 177.  doi: 10.1285/i15900932v28n1p177.  Google Scholar

[25]

J. A. Griepentrog, K. Gröger, H. C. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems,, Math. Nachr., 241 (2002), 110.  doi: 10.1002/1522-2616(200207)241:1<110::AID-MANA110>3.0.CO;2-R.  Google Scholar

[26]

J. Griepentrog, Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces,, Adv. Differ. Equ., 12 (2007), 1031.   Google Scholar

[27]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman, (1985).  doi: 10.1137/1.9781611972030.  Google Scholar

[28]

K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations,, Math. Ann., 283 (1989), 679.  doi: 10.1007/BF01442860.  Google Scholar

[29]

K. Gröger, $W^{1,p}$-estimates of solutions to evolution equations corresponding to nonsmooth second order elliptic differential operators,, Nonlinear Anal., 18 (1992), 569.  doi: 10.1016/0362-546X(92)90211-V.  Google Scholar

[30]

B. H. Haak and E. M. Ouhabaz, Maximal regularity for non-autonomous evolution equations,, Math. Ann., 363 (2015), 1117.  doi: 10.1007/s00208-015-1199-7.  Google Scholar

[31]

R. Haller-Dintelmann, H.-C. Kaiser and J. Rehberg, Elliptic model problems including mixed boundary conditions and material heterogeneities,, J. Math. Pures Appl., 89 (2008), 25.  doi: 10.1016/j.matpur.2007.09.001.  Google Scholar

[32]

R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems,, Appl. Math. Optim., 60 (2009), 397.  doi: 10.1007/s00245-009-9077-x.  Google Scholar

[33]

R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary conditions,, J. Differ. Equations, 247 (2009), 1354.  doi: 10.1016/j.jde.2009.06.001.  Google Scholar

[34]

R. Haller-Dintelmann and J. Rehberg, Coercivity for elliptic operators and positivity of solutions on Lipschitz domains,, Arch. Math., 95 (2010), 457.  doi: 10.1007/s00013-010-0184-3.  Google Scholar

[35]

R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators on distribution spaces,, in Parabolic problems: The Herbert Amann Festschrift, 80 (2011), 313.  doi: 10.1007/978-3-0348-0075-4_17.  Google Scholar

[36]

M. Hieber and J. Rehberg, Quasilinear parabolic systems with mixed boundary conditions on nonsmooth domains,, SIAM J. Math. Anal., 40 (2008), 292.  doi: 10.1137/070683829.  Google Scholar

[37]

M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints,, Springer Netherlands, (2009).  doi: 10.1007/978-1-4020-8839-1.  Google Scholar

[38]

A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbbR^n$,, Harwood Academic Publishers, (1984).   Google Scholar

[39]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Academic Press, (1980).  doi: 10.1137/1.9780898719451.  Google Scholar

[40]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type,, American Mathematical Society (AMS), (1968).   Google Scholar

[41]

V. G. Maz'ya, Sobolev Spaces,, Second, (2011).  doi: 10.1007/978-3-662-09922-3.  Google Scholar

[42]

E. M. Ouhabaz, Maximal regularity for non-autonomous evolution equations governed by forms having less regularity,, Arch. Math. (Basel), 105 (2015), 79.  doi: 10.1007/s00013-015-0783-0.  Google Scholar

[43]

J. Prüss, Maximal regularity for evolution equations in $L^p$-spaces,, Conf. Semin. Mat. Univ. Bari, 285 (2002), 1.   Google Scholar

[44]

M. Struwe, On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems,, Manuscr. Math., 35 (1981), 125.  doi: 10.1007/BF01168452.  Google Scholar

[45]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North Holland Publishing Company, (1978).   Google Scholar

show all references

References:
[1]

H. Amann, Parabolic evolution equations and nonlinear boundary conditions,, J. Differ. Equations, 72 (1988), 201.  doi: 10.1016/0022-0396(88)90156-8.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems,, in: Function spaces, 133 (1993), 9.  doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

H. Amann, Maximal regularity for nonautonomous evolution equations,, Adv. Nonlinear Stud., 4 (2004), 417.   Google Scholar

[4]

H. Amann, Linear and Quasilinear Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[5]

W. Arendt, D. Dier, H. Laasri and E. M. Ouhabaz, Maximal regularity for evolution equations governed by non-autonomous forms,, Adv. Differential Equations, 19 (2014), 1043.   Google Scholar

[6]

P. Auscher, N. Badr, R. Haller-Dintelmann and J. Rehberg, The square root problem for second order, divergence form operators with mixed boundary conditions on $L^p$,, J. Evol. Eq., 15 (2015), 165.  doi: 10.1007/s00028-014-0255-1.  Google Scholar

[7]

C. Bennett and R. Sharpley, Interpolation of Operators,, Academic Press, (1988).   Google Scholar

[8]

K. Brewster, D. Mitrea, I. Mitrea and M. Mitrea, Extending Sobolev functions with partially vanishing traces from locally $(\epsilon,\delta)$-domains and applications to mixed boundary problems,, J. Funct. Anal., 266 (2014), 4314.  doi: 10.1016/j.jfa.2014.02.001.  Google Scholar

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011).  doi: 10.1007/978-0-387-70914-7.  Google Scholar

[10]

E. Casas, J. C. de los Reyes and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints,, SIAM J. Control Optim., 19 (2008), 616.  doi: 10.1137/07068240X.  Google Scholar

[11]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North Holland, (1978).   Google Scholar

[12]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I,, Springer-Verlag, (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[13]

J. C. de los Reyes, P. Merino, J. Rehberg and F. Tröltzsch, Optimality conditions for state-constrained PDE control problems with time-dependent controls,, Control Cybernet., 37 (2008), 5.   Google Scholar

[14]

D. Dier, Non-autonomous maximal regularity for forms of bounded variation,, J. Math. Anal. Appl., 425 (2015), 33.  doi: 10.1016/j.jmaa.2014.12.006.  Google Scholar

[15]

K. Disser, H.-C. Kaiser and J. Rehberg, Optimal Sobolev regularity for linear second-order divergence elliptic operators occuring in real-world problems,, SIAM J. Math. Anal., 47 (2015), 1719.  doi: 10.1137/140982969.  Google Scholar

[16]

J. Elschner, J. Rehberg and G. Schmidt, Optimal regularity for elliptic transmission problems including $C^1$ interfaces,, Interfaces Free Bound., 9 (2007), 233.  doi: 10.4171/IFB/163.  Google Scholar

[17]

A. F. M. ter Elst and J. Rehberg, Hölder estimates for second-order operators on domains with rough boundary,, Adv. Differential Equations, 20 (2015), 299.   Google Scholar

[18]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in advanced mathematics, (1992).   Google Scholar

[19]

I. Fonseca and G. Parry, Equilibrium configurations of defective crystals,, Arch. Rat. Mech. Anal., 120 (1992), 245.  doi: 10.1007/BF00375027.  Google Scholar

[20]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen,, Akademie-Verlag, (1974).   Google Scholar

[21]

Ch. Gallarati and M. Veraar, Maximal regularity for non-autonomous equations with measurable dependence on time,, , ().   Google Scholar

[22]

M. Giaquinta and M. Struwe, An optimal regularity result for a class of quasilinear parabolic systems,, Manuscr. Math., 36 (1981), 223.  doi: 10.1007/BF01170135.  Google Scholar

[23]

E. Giusti, Metodi Diretti nel Calcolo Delle Variazioni,, Unione Matematica Italiana, (1994).   Google Scholar

[24]

J. A. Griepentrog, W. Höppner, H.-C. Kaiser and J. Rehberg, A bi-Lipschitz continuous, volume preserving map from the unit ball onto a cube,, Note Mat., 28 (2008), 177.  doi: 10.1285/i15900932v28n1p177.  Google Scholar

[25]

J. A. Griepentrog, K. Gröger, H. C. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems,, Math. Nachr., 241 (2002), 110.  doi: 10.1002/1522-2616(200207)241:1<110::AID-MANA110>3.0.CO;2-R.  Google Scholar

[26]

J. Griepentrog, Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces,, Adv. Differ. Equ., 12 (2007), 1031.   Google Scholar

[27]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman, (1985).  doi: 10.1137/1.9781611972030.  Google Scholar

[28]

K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations,, Math. Ann., 283 (1989), 679.  doi: 10.1007/BF01442860.  Google Scholar

[29]

K. Gröger, $W^{1,p}$-estimates of solutions to evolution equations corresponding to nonsmooth second order elliptic differential operators,, Nonlinear Anal., 18 (1992), 569.  doi: 10.1016/0362-546X(92)90211-V.  Google Scholar

[30]

B. H. Haak and E. M. Ouhabaz, Maximal regularity for non-autonomous evolution equations,, Math. Ann., 363 (2015), 1117.  doi: 10.1007/s00208-015-1199-7.  Google Scholar

[31]

R. Haller-Dintelmann, H.-C. Kaiser and J. Rehberg, Elliptic model problems including mixed boundary conditions and material heterogeneities,, J. Math. Pures Appl., 89 (2008), 25.  doi: 10.1016/j.matpur.2007.09.001.  Google Scholar

[32]

R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems,, Appl. Math. Optim., 60 (2009), 397.  doi: 10.1007/s00245-009-9077-x.  Google Scholar

[33]

R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary conditions,, J. Differ. Equations, 247 (2009), 1354.  doi: 10.1016/j.jde.2009.06.001.  Google Scholar

[34]

R. Haller-Dintelmann and J. Rehberg, Coercivity for elliptic operators and positivity of solutions on Lipschitz domains,, Arch. Math., 95 (2010), 457.  doi: 10.1007/s00013-010-0184-3.  Google Scholar

[35]

R. Haller-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators on distribution spaces,, in Parabolic problems: The Herbert Amann Festschrift, 80 (2011), 313.  doi: 10.1007/978-3-0348-0075-4_17.  Google Scholar

[36]

M. Hieber and J. Rehberg, Quasilinear parabolic systems with mixed boundary conditions on nonsmooth domains,, SIAM J. Math. Anal., 40 (2008), 292.  doi: 10.1137/070683829.  Google Scholar

[37]

M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints,, Springer Netherlands, (2009).  doi: 10.1007/978-1-4020-8839-1.  Google Scholar

[38]

A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbbR^n$,, Harwood Academic Publishers, (1984).   Google Scholar

[39]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Academic Press, (1980).  doi: 10.1137/1.9780898719451.  Google Scholar

[40]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type,, American Mathematical Society (AMS), (1968).   Google Scholar

[41]

V. G. Maz'ya, Sobolev Spaces,, Second, (2011).  doi: 10.1007/978-3-662-09922-3.  Google Scholar

[42]

E. M. Ouhabaz, Maximal regularity for non-autonomous evolution equations governed by forms having less regularity,, Arch. Math. (Basel), 105 (2015), 79.  doi: 10.1007/s00013-015-0783-0.  Google Scholar

[43]

J. Prüss, Maximal regularity for evolution equations in $L^p$-spaces,, Conf. Semin. Mat. Univ. Bari, 285 (2002), 1.   Google Scholar

[44]

M. Struwe, On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems,, Manuscr. Math., 35 (1981), 125.  doi: 10.1007/BF01168452.  Google Scholar

[45]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North Holland Publishing Company, (1978).   Google Scholar

[1]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

[2]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[3]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[4]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[5]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[6]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[7]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[8]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[9]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

[10]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[11]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[12]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[13]

Vincent Lynch. Decay of correlations for non-Hölder observables. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 19-46. doi: 10.3934/dcds.2006.16.19

[14]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

[15]

Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241

[16]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[17]

Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569

[18]

Genni Fragnelli, Dimitri Mugnai. Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-17. doi: 10.3934/dcdss.2020084

[19]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[20]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]