September  2016, 6(3): 447-466. doi: 10.3934/mcrf.2016011

Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions

1. 

Department of Systems Design and Informatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan

2. 

Department of Systems Design and Informatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502

Received  June 2014 Revised  April 2016 Published  August 2016

For bilinear infinite-dimensional dynamical systems, we show the equivalence between uniform global asymptotic stability and integral input-to-state stability. We provide two proofs of this fact. One applies to general systems over Banach spaces. The other is restricted to Hilbert spaces, but is more constructive and results in an explicit form of iISS Lyapunov functions.
Citation: Andrii Mironchenko, Hiroshi Ito. Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Mathematical Control & Related Fields, 2016, 6 (3) : 447-466. doi: 10.3934/mcrf.2016011
References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control,, Consultants Bureau, (1987). doi: 10.1007/978-1-4615-7551-1. Google Scholar

[2]

D. Angeli and A. Astolfi, A tight small gain theorem for not necessarily ISS systems,, Syst. Control Lett., 56 (2007), 87. doi: 10.1016/j.sysconle.2006.08.003. Google Scholar

[3]

D. Angeli, E. D. Sontag and Y. Wang, A characterization of integral input-to-state stability,, IEEE Transactions on Automatic Control, 45 (2000), 1082. doi: 10.1109/9.863594. Google Scholar

[4]

T. Cazenave and A. Haraux, An Introduction To Semilinear Evolution Equations,, Oxford University Press, (1998). Google Scholar

[5]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4224-6. Google Scholar

[6]

S. Dashkovskiy and A. Mironchenko, On the uniform input-to-state stability of reaction-diffusion systems,, in Proc. of the 49th IEEE Conference on Decision and Control (CDC), (2010), 6547. doi: 10.1109/CDC.2010.5717779. Google Scholar

[7]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of infinite-dimensional control systems,, Mathematics of Control, 25 (2013), 1. doi: 10.1007/s00498-012-0090-2. Google Scholar

[8]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of nonlinear impulsive systems,, SIAM Journal on Control and Optimization, 51 (2013), 1962. doi: 10.1137/120881993. Google Scholar

[9]

S. Dashkovskiy, B. S. Rüffer and F. R. Wirth, An ISS small gain theorem for general networks,, Mathematics of Control, 19 (2007), 93. doi: 10.1007/s00498-007-0014-8. Google Scholar

[10]

R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design: State-Space and Lyapunov Techniques,, Birkhäuser, (1996). doi: 10.1007/978-0-8176-4759-9. Google Scholar

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Verlag, (1981). Google Scholar

[12]

B. Ingalls and E. D. Sontag, A small-gain theorem with applications to input/output systems, incremental stability, detectability, and interconnections,, Journal of the Franklin Institute, 339 (2002), 211. doi: 10.1016/S0016-0032(02)00022-4. Google Scholar

[13]

H. Ito, A Lyapunov Approach to Cascade Interconnection of Integral Input-to-State Stable Systems,, IEEE Transactions on Automatic Control, 55 (2010), 702. doi: 10.1109/TAC.2009.2037457. Google Scholar

[14]

H. Ito, Z. P. Jiang, S. Dashkovskiy and B. Rüffer, Robust stability of networks of iISS systems: Construction of sum-type Lyapunov functions,, IEEE Transactions on Automatic Control, 58 (2013), 1192. doi: 10.1109/TAC.2012.2231552. Google Scholar

[15]

H. Ito and Z.-P. Jiang, Necessary and Sufficient Small Gain Conditions for Integral Input-to-State Stable Systems: A Lyapunov Perspective,, IEEE Transactions on Automatic Control, 54 (2009), 2389. doi: 10.1109/TAC.2009.2028980. Google Scholar

[16]

H. Ito, State-dependent scaling problems and stability of interconnected iISS and ISS systems,, IEEE Transactions on Automatic Control, 51 (2006), 1626. doi: 10.1109/TAC.2006.882930. Google Scholar

[17]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Springer, (2012). doi: 10.1007/978-3-0348-0399-1. Google Scholar

[18]

B. Jayawardhana, H. Logemann and E. P. Ryan, Infinite-dimensional feedback systems: the circle criterion and input-to-state stability,, Communications in Information and Systems, 8 (2008), 413. doi: 10.4310/CIS.2008.v8.n4.a4. Google Scholar

[19]

Z.-P. Jiang, I. M. Y. Mareels and Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems,, Automatica, 32 (1996), 1211. doi: 10.1016/0005-1098(96)00051-9. Google Scholar

[20]

Z.-P. Jiang, A. R. Teel and L. Praly, Small-gain theorem for ISS systems and applications,, Mathematics of Control, 7 (1994), 95. doi: 10.1007/BF01211469. Google Scholar

[21]

Z.-P. Jiang and Y. Wang, Input-to-state stability for discrete-time nonlinear systems,, Automatica, 37 (2001), 857. doi: 10.1016/S0005-1098(01)00028-0. Google Scholar

[22]

Z.-P. Jiang and Y. Wang, A generalization of the nonlinear small-gain theorem for large-scale complex systems,, in 7th World Congress on Intelligent Control and Automation (WCICA), (2008), 1188. Google Scholar

[23]

I. Karafyllis and Z.-P. Jiang, A vector small-gain theorem for general non-linear control systems,, IMA Journal of Mathematical Control and Information, 28 (2011), 309. doi: 10.1093/imamci/dnr001. Google Scholar

[24]

I. Karafyllis and Z.-P. Jiang, A new small-gain theorem with an application to the stabilization of the chemostat,, Int. J. Robust. Nonlinear Control, 22 (2012), 1602. doi: 10.1002/rnc.1773. Google Scholar

[25]

P. Kokotović and M. Arcak, Constructive nonlinear control: a historical perspective,, Automatica, 37 (2001), 637. doi: 10.1016/S0005-1098(01)00002-4. Google Scholar

[26]

Y. Lin, E. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability,, SIAM Journal on Control and Optimization, 34 (1996), 124. doi: 10.1137/S0363012993259981. Google Scholar

[27]

H. Logemann, Stabilization of well-posed infinite-dimensional systems by dynamic sampled-data feedback,, SIAM Journal on Control and Optimization, 51 (2013), 1203. doi: 10.1137/110850396. Google Scholar

[28]

F. Mazenc and C. Prieur, Strict Lyapunov functions for semilinear parabolic partial differential equations,, Mathematical Control and Related Fields, 1 (2011), 231. doi: 10.3934/mcrf.2011.1.231. Google Scholar

[29]

A. Mironchenko, Local input-to-state stability: Characterizations and counterexamples,, Systems & Control Letters, 87 (2016), 23. doi: 10.1016/j.sysconle.2015.10.014. Google Scholar

[30]

A. Mironchenko and H. Ito, Integral input-to-state stability of bilinear infinite-dimensional systems,, in Proc. of the 53th IEEE Conference on Decision and Control, (2014), 3155. doi: 10.1109/CDC.2014.7039876. Google Scholar

[31]

A. Mironchenko and H. Ito, Construction of Lyapunov functions for interconnected parabolic systems: An iISS approach,, SIAM Journal on Control and Optimization, 53 (2015), 3364. doi: 10.1137/14097269X. Google Scholar

[32]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives,, Kluwer Academic Publishers Group, (1991). doi: 10.1007/978-94-011-3562-7. Google Scholar

[33]

P. Pepe and Z.-P. Jiang, A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems,, Systems & Control Letters, 55 (2006), 1006. doi: 10.1016/j.sysconle.2006.06.013. Google Scholar

[34]

C. Prieur and F. Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws,, Mathematics of Control, 24 (2012), 111. doi: 10.1007/s00498-012-0074-2. Google Scholar

[35]

H. Royden and P. Fitzpatrick, Real Analysis,, Prentice Hall, (2010). Google Scholar

[36]

E. Sontag and A. Teel, Changing supply functions in input/state stable systems,, IEEE Transactions on Automatic Control, 40 (1995), 1476. doi: 10.1109/9.402246. Google Scholar

[37]

E. D. Sontag, Smooth stabilization implies coprime factorization,, IEEE Transactions on Automatic Control, 34 (1989), 435. doi: 10.1109/9.28018. Google Scholar

[38]

E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property,, Systems & Control Letters, 24 (1995), 351. doi: 10.1016/0167-6911(94)00050-6. Google Scholar

[39]

E. D. Sontag, Comments on integral variants of ISS,, Systems & Control Letters, 34 (1998), 93. doi: 10.1016/S0167-6911(98)00003-6. Google Scholar

[40]

E. D. Sontag, Input to state stability: Basic concepts and results,, in Nonlinear and Optimal Control Theory, 1932 (2008), 163. doi: 10.1007/978-3-540-77653-6_3. Google Scholar

[41]

G. Teschl, Ordinary Differential Equations and Dynamical Systems,, American Mathematical Society, (2012). doi: 10.1090/gsm/140. Google Scholar

show all references

References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control,, Consultants Bureau, (1987). doi: 10.1007/978-1-4615-7551-1. Google Scholar

[2]

D. Angeli and A. Astolfi, A tight small gain theorem for not necessarily ISS systems,, Syst. Control Lett., 56 (2007), 87. doi: 10.1016/j.sysconle.2006.08.003. Google Scholar

[3]

D. Angeli, E. D. Sontag and Y. Wang, A characterization of integral input-to-state stability,, IEEE Transactions on Automatic Control, 45 (2000), 1082. doi: 10.1109/9.863594. Google Scholar

[4]

T. Cazenave and A. Haraux, An Introduction To Semilinear Evolution Equations,, Oxford University Press, (1998). Google Scholar

[5]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4224-6. Google Scholar

[6]

S. Dashkovskiy and A. Mironchenko, On the uniform input-to-state stability of reaction-diffusion systems,, in Proc. of the 49th IEEE Conference on Decision and Control (CDC), (2010), 6547. doi: 10.1109/CDC.2010.5717779. Google Scholar

[7]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of infinite-dimensional control systems,, Mathematics of Control, 25 (2013), 1. doi: 10.1007/s00498-012-0090-2. Google Scholar

[8]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of nonlinear impulsive systems,, SIAM Journal on Control and Optimization, 51 (2013), 1962. doi: 10.1137/120881993. Google Scholar

[9]

S. Dashkovskiy, B. S. Rüffer and F. R. Wirth, An ISS small gain theorem for general networks,, Mathematics of Control, 19 (2007), 93. doi: 10.1007/s00498-007-0014-8. Google Scholar

[10]

R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design: State-Space and Lyapunov Techniques,, Birkhäuser, (1996). doi: 10.1007/978-0-8176-4759-9. Google Scholar

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Verlag, (1981). Google Scholar

[12]

B. Ingalls and E. D. Sontag, A small-gain theorem with applications to input/output systems, incremental stability, detectability, and interconnections,, Journal of the Franklin Institute, 339 (2002), 211. doi: 10.1016/S0016-0032(02)00022-4. Google Scholar

[13]

H. Ito, A Lyapunov Approach to Cascade Interconnection of Integral Input-to-State Stable Systems,, IEEE Transactions on Automatic Control, 55 (2010), 702. doi: 10.1109/TAC.2009.2037457. Google Scholar

[14]

H. Ito, Z. P. Jiang, S. Dashkovskiy and B. Rüffer, Robust stability of networks of iISS systems: Construction of sum-type Lyapunov functions,, IEEE Transactions on Automatic Control, 58 (2013), 1192. doi: 10.1109/TAC.2012.2231552. Google Scholar

[15]

H. Ito and Z.-P. Jiang, Necessary and Sufficient Small Gain Conditions for Integral Input-to-State Stable Systems: A Lyapunov Perspective,, IEEE Transactions on Automatic Control, 54 (2009), 2389. doi: 10.1109/TAC.2009.2028980. Google Scholar

[16]

H. Ito, State-dependent scaling problems and stability of interconnected iISS and ISS systems,, IEEE Transactions on Automatic Control, 51 (2006), 1626. doi: 10.1109/TAC.2006.882930. Google Scholar

[17]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces,, Springer, (2012). doi: 10.1007/978-3-0348-0399-1. Google Scholar

[18]

B. Jayawardhana, H. Logemann and E. P. Ryan, Infinite-dimensional feedback systems: the circle criterion and input-to-state stability,, Communications in Information and Systems, 8 (2008), 413. doi: 10.4310/CIS.2008.v8.n4.a4. Google Scholar

[19]

Z.-P. Jiang, I. M. Y. Mareels and Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems,, Automatica, 32 (1996), 1211. doi: 10.1016/0005-1098(96)00051-9. Google Scholar

[20]

Z.-P. Jiang, A. R. Teel and L. Praly, Small-gain theorem for ISS systems and applications,, Mathematics of Control, 7 (1994), 95. doi: 10.1007/BF01211469. Google Scholar

[21]

Z.-P. Jiang and Y. Wang, Input-to-state stability for discrete-time nonlinear systems,, Automatica, 37 (2001), 857. doi: 10.1016/S0005-1098(01)00028-0. Google Scholar

[22]

Z.-P. Jiang and Y. Wang, A generalization of the nonlinear small-gain theorem for large-scale complex systems,, in 7th World Congress on Intelligent Control and Automation (WCICA), (2008), 1188. Google Scholar

[23]

I. Karafyllis and Z.-P. Jiang, A vector small-gain theorem for general non-linear control systems,, IMA Journal of Mathematical Control and Information, 28 (2011), 309. doi: 10.1093/imamci/dnr001. Google Scholar

[24]

I. Karafyllis and Z.-P. Jiang, A new small-gain theorem with an application to the stabilization of the chemostat,, Int. J. Robust. Nonlinear Control, 22 (2012), 1602. doi: 10.1002/rnc.1773. Google Scholar

[25]

P. Kokotović and M. Arcak, Constructive nonlinear control: a historical perspective,, Automatica, 37 (2001), 637. doi: 10.1016/S0005-1098(01)00002-4. Google Scholar

[26]

Y. Lin, E. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability,, SIAM Journal on Control and Optimization, 34 (1996), 124. doi: 10.1137/S0363012993259981. Google Scholar

[27]

H. Logemann, Stabilization of well-posed infinite-dimensional systems by dynamic sampled-data feedback,, SIAM Journal on Control and Optimization, 51 (2013), 1203. doi: 10.1137/110850396. Google Scholar

[28]

F. Mazenc and C. Prieur, Strict Lyapunov functions for semilinear parabolic partial differential equations,, Mathematical Control and Related Fields, 1 (2011), 231. doi: 10.3934/mcrf.2011.1.231. Google Scholar

[29]

A. Mironchenko, Local input-to-state stability: Characterizations and counterexamples,, Systems & Control Letters, 87 (2016), 23. doi: 10.1016/j.sysconle.2015.10.014. Google Scholar

[30]

A. Mironchenko and H. Ito, Integral input-to-state stability of bilinear infinite-dimensional systems,, in Proc. of the 53th IEEE Conference on Decision and Control, (2014), 3155. doi: 10.1109/CDC.2014.7039876. Google Scholar

[31]

A. Mironchenko and H. Ito, Construction of Lyapunov functions for interconnected parabolic systems: An iISS approach,, SIAM Journal on Control and Optimization, 53 (2015), 3364. doi: 10.1137/14097269X. Google Scholar

[32]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives,, Kluwer Academic Publishers Group, (1991). doi: 10.1007/978-94-011-3562-7. Google Scholar

[33]

P. Pepe and Z.-P. Jiang, A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems,, Systems & Control Letters, 55 (2006), 1006. doi: 10.1016/j.sysconle.2006.06.013. Google Scholar

[34]

C. Prieur and F. Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws,, Mathematics of Control, 24 (2012), 111. doi: 10.1007/s00498-012-0074-2. Google Scholar

[35]

H. Royden and P. Fitzpatrick, Real Analysis,, Prentice Hall, (2010). Google Scholar

[36]

E. Sontag and A. Teel, Changing supply functions in input/state stable systems,, IEEE Transactions on Automatic Control, 40 (1995), 1476. doi: 10.1109/9.402246. Google Scholar

[37]

E. D. Sontag, Smooth stabilization implies coprime factorization,, IEEE Transactions on Automatic Control, 34 (1989), 435. doi: 10.1109/9.28018. Google Scholar

[38]

E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property,, Systems & Control Letters, 24 (1995), 351. doi: 10.1016/0167-6911(94)00050-6. Google Scholar

[39]

E. D. Sontag, Comments on integral variants of ISS,, Systems & Control Letters, 34 (1998), 93. doi: 10.1016/S0167-6911(98)00003-6. Google Scholar

[40]

E. D. Sontag, Input to state stability: Basic concepts and results,, in Nonlinear and Optimal Control Theory, 1932 (2008), 163. doi: 10.1007/978-3-540-77653-6_3. Google Scholar

[41]

G. Teschl, Ordinary Differential Equations and Dynamical Systems,, American Mathematical Society, (2012). doi: 10.1090/gsm/140. Google Scholar

[1]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019192

[2]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[3]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[4]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[5]

Martin Schechter. Monotonicity methods for infinite dimensional sandwich systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 455-468. doi: 10.3934/dcds.2010.28.455

[6]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[7]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

[8]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[9]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[10]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[11]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[12]

Jifeng Chu, Jinzhi Lei, Meirong Zhang. Lyapunov stability for conservative systems with lower degrees of freedom. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 423-443. doi: 10.3934/dcdsb.2011.16.423

[13]

Paolo Perfetti. A Nekhoroshev theorem for some infinite--dimensional systems. Communications on Pure & Applied Analysis, 2006, 5 (1) : 125-146. doi: 10.3934/cpaa.2006.5.125

[14]

Mohammed Elarbi Achhab. On observers and compensators for infinite dimensional semilinear systems. Evolution Equations & Control Theory, 2015, 4 (2) : 131-142. doi: 10.3934/eect.2015.4.131

[15]

Takashi Suzuki, Shuji Yoshikawa. Stability of the steady state for multi-dimensional thermoelastic systems of shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 209-217. doi: 10.3934/dcdss.2012.5.209

[16]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[17]

Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems & Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567

[18]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[19]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[20]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]