September  2016, 11(3): 447-469. doi: 10.3934/nhm.2016004

A weakly coupled model of differential equations for thief tracking

1. 

Department of Mathematics, University of Mannheim, D-68131 Mannheim, Germany

Received  April 2015 Revised  November 2015 Published  August 2016

In this work we introduce a novel model for the tracking of a thief moving through a road network. The modeling equations are given by a strongly coupled system of scalar conservation laws for the road traffic and ordinary differential equations for the thief evolution. A crucial point is the characterization at intersections, where the thief has to take a routing decision depending on the available local information. We develop a numerical approach to solve the thief tracking problem by combining a time-dependent shortest path algorithm with the numerical solution of the traffic flow equations. Various computational experiments are presented to describe different behavior patterns.
Citation: Simone Göttlich, Camill Harter. A weakly coupled model of differential equations for thief tracking. Networks & Heterogeneous Media, 2016, 11 (3) : 447-469. doi: 10.3934/nhm.2016004
References:
[1]

D. A. Andrews and J. Bonta, The Psychology Of Criminal Conduct,, Anderson Publishing, (2010).   Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.  doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510.  doi: 10.1137/070697768.  Google Scholar

[4]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM Journal on Mathematical Analysis, 36 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[5]

R. M. Colombo and A. Marson, Conservation laws and ODEs: A traffic problem,, Springer, (2003), 455.   Google Scholar

[6]

R. M. Colombo and A. Marson, A hölder continuous ODE related to traffic flow,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 759.  doi: 10.1017/S0308210500002663.  Google Scholar

[7]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202511500230.  Google Scholar

[8]

J. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[9]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization Of Supply Chains,, Society for Industrial and Applied Mathematics (SIAM), (2010).  doi: 10.1137/1.9780898717600.  Google Scholar

[10]

B. C. Dean, Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms,, Technical report, (2004).   Google Scholar

[11]

M. L. Delle Monache and P. Goatin, A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow,, Discrete and Continuous Dynamical Systems-Series S, 7 (2014), 435.  doi: 10.3934/dcdss.2014.7.435.  Google Scholar

[12]

S. E. Dreyfus, An appraisal of some shortest-path algorithms,, Operations Research, 17 (1969), 395.  doi: 10.1287/opre.17.3.395.  Google Scholar

[13]

G. Feichtinger, A differential games solution to a model of competition between a thief and the police,, Management Science, 29 (1983), 686.  doi: 10.1287/mnsc.29.6.686.  Google Scholar

[14]

A. F. Filippov and F. M. Arscott, Differential Equations With Discontinuous Righthand Sides: Control Systems,, Springer, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[15]

M. Garavello and B. Piccoli, Traffic Flow On Networks,, American Institute of Mathematical Sciences Springfield, (2006).   Google Scholar

[16]

S. Göttlich, S. Kühn, P. Ohst, S. Ruzika and M. Thiemann, Evacuation dynamics influenced by spreading hazardous material,, Netw. Heterog. Media, 6 (2011), 443.  doi: 10.3934/nhm.2011.6.443.  Google Scholar

[17]

S. Göttlich and U. Ziegler, Traffic light control: A case study,, Discrete and Continuous Dynamical Systems-Series S, 7 (2014), 483.  doi: 10.3934/dcdss.2014.7.483.  Google Scholar

[18]

S. Göttlich, M. Herty and U. Ziegler, Modeling and optimizing traffic light settings in road networks,, Computers & Operations Research, 55 (2015), 36.  doi: 10.1016/j.cor.2014.10.001.  Google Scholar

[19]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM Journal on Mathematical Analysis, 26 (1995), 999.  doi: 10.1137/S0036141093243289.  Google Scholar

[20]

G. Jiang, D. Levy, C. Lin, S. Osher and E. Tadmor, High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws,, SIAM Journal on Numerical Analysis, 35 (1998), 2147.  doi: 10.1137/S0036142997317560.  Google Scholar

[21]

C. Lattanzio, A. Maurizi and B. Piccoli, Moving bottlenecks in car traffic flow: A PDE-ODE coupled model,, SIAM Journal on Mathematical Analysis, 43 (2011), 50.  doi: 10.1137/090767224.  Google Scholar

[22]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[23]

A. K. Misra, Modeling the effect of police deterrence on the prevalence of crime in the society,, Applied Mathematics and Computation, 237 (2014), 531.  doi: 10.1016/j.amc.2014.03.136.  Google Scholar

[24]

A. A. Reid, R. Frank, N. Iwanski, V.Dabbaghian and P. Brantingham, Uncovering the spatial patterning of crimes: A criminal movement model (CriMM),, Journal of Research in Crime and Delinquency, 51 (2014), 230.  doi: 10.1177/0022427813483753.  Google Scholar

[25]

P. I. Richards, Shock waves on the highway,, Operations Research, 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[26]

N. Rodriguez and A. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior,, Math. Models Methods Appl. Sci., 20 (2010), 1425.  doi: 10.1142/S0218202510004696.  Google Scholar

[27]

M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behaviour,, Math. Models Methods Appl. Sci., 18 (2008), 1249.  doi: 10.1142/S0218202508003029.  Google Scholar

[28]

M. B. Short, A. L. Bertozzi and P. J. Brantingham, Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression,, SIAM Journal on Applied Dynamical Systems, 9 (2010), 462.  doi: 10.1137/090759069.  Google Scholar

[29]

J. T. Woodworth, G. O. Mohler, A. L. Bertozzi and P. J. Brantingham, Non-local crime density estimation incorporating housing information,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014).  doi: 10.1098/rsta.2013.0403.  Google Scholar

[30]

J. R. Zipkin, M. B. Short and A. L. Bertozzi, Cops on the dots in a mathematical model of urban crime and police response,, Discrete and Continuous Dynamical Systems-Series B, 19 (2014), 1479.  doi: 10.3934/dcdsb.2014.19.1479.  Google Scholar

show all references

References:
[1]

D. A. Andrews and J. Bonta, The Psychology Of Criminal Conduct,, Anderson Publishing, (2010).   Google Scholar

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.  doi: 10.3934/nhm.2006.1.41.  Google Scholar

[3]

G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510.  doi: 10.1137/070697768.  Google Scholar

[4]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM Journal on Mathematical Analysis, 36 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[5]

R. M. Colombo and A. Marson, Conservation laws and ODEs: A traffic problem,, Springer, (2003), 455.   Google Scholar

[6]

R. M. Colombo and A. Marson, A hölder continuous ODE related to traffic flow,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 759.  doi: 10.1017/S0308210500002663.  Google Scholar

[7]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic,, Math. Models Methods Appl. Sci., 22 (2012).  doi: 10.1142/S0218202511500230.  Google Scholar

[8]

J. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2.  doi: 10.1109/TAC.2006.887903.  Google Scholar

[9]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization Of Supply Chains,, Society for Industrial and Applied Mathematics (SIAM), (2010).  doi: 10.1137/1.9780898717600.  Google Scholar

[10]

B. C. Dean, Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms,, Technical report, (2004).   Google Scholar

[11]

M. L. Delle Monache and P. Goatin, A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow,, Discrete and Continuous Dynamical Systems-Series S, 7 (2014), 435.  doi: 10.3934/dcdss.2014.7.435.  Google Scholar

[12]

S. E. Dreyfus, An appraisal of some shortest-path algorithms,, Operations Research, 17 (1969), 395.  doi: 10.1287/opre.17.3.395.  Google Scholar

[13]

G. Feichtinger, A differential games solution to a model of competition between a thief and the police,, Management Science, 29 (1983), 686.  doi: 10.1287/mnsc.29.6.686.  Google Scholar

[14]

A. F. Filippov and F. M. Arscott, Differential Equations With Discontinuous Righthand Sides: Control Systems,, Springer, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[15]

M. Garavello and B. Piccoli, Traffic Flow On Networks,, American Institute of Mathematical Sciences Springfield, (2006).   Google Scholar

[16]

S. Göttlich, S. Kühn, P. Ohst, S. Ruzika and M. Thiemann, Evacuation dynamics influenced by spreading hazardous material,, Netw. Heterog. Media, 6 (2011), 443.  doi: 10.3934/nhm.2011.6.443.  Google Scholar

[17]

S. Göttlich and U. Ziegler, Traffic light control: A case study,, Discrete and Continuous Dynamical Systems-Series S, 7 (2014), 483.  doi: 10.3934/dcdss.2014.7.483.  Google Scholar

[18]

S. Göttlich, M. Herty and U. Ziegler, Modeling and optimizing traffic light settings in road networks,, Computers & Operations Research, 55 (2015), 36.  doi: 10.1016/j.cor.2014.10.001.  Google Scholar

[19]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM Journal on Mathematical Analysis, 26 (1995), 999.  doi: 10.1137/S0036141093243289.  Google Scholar

[20]

G. Jiang, D. Levy, C. Lin, S. Osher and E. Tadmor, High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws,, SIAM Journal on Numerical Analysis, 35 (1998), 2147.  doi: 10.1137/S0036142997317560.  Google Scholar

[21]

C. Lattanzio, A. Maurizi and B. Piccoli, Moving bottlenecks in car traffic flow: A PDE-ODE coupled model,, SIAM Journal on Mathematical Analysis, 43 (2011), 50.  doi: 10.1137/090767224.  Google Scholar

[22]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[23]

A. K. Misra, Modeling the effect of police deterrence on the prevalence of crime in the society,, Applied Mathematics and Computation, 237 (2014), 531.  doi: 10.1016/j.amc.2014.03.136.  Google Scholar

[24]

A. A. Reid, R. Frank, N. Iwanski, V.Dabbaghian and P. Brantingham, Uncovering the spatial patterning of crimes: A criminal movement model (CriMM),, Journal of Research in Crime and Delinquency, 51 (2014), 230.  doi: 10.1177/0022427813483753.  Google Scholar

[25]

P. I. Richards, Shock waves on the highway,, Operations Research, 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[26]

N. Rodriguez and A. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior,, Math. Models Methods Appl. Sci., 20 (2010), 1425.  doi: 10.1142/S0218202510004696.  Google Scholar

[27]

M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behaviour,, Math. Models Methods Appl. Sci., 18 (2008), 1249.  doi: 10.1142/S0218202508003029.  Google Scholar

[28]

M. B. Short, A. L. Bertozzi and P. J. Brantingham, Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression,, SIAM Journal on Applied Dynamical Systems, 9 (2010), 462.  doi: 10.1137/090759069.  Google Scholar

[29]

J. T. Woodworth, G. O. Mohler, A. L. Bertozzi and P. J. Brantingham, Non-local crime density estimation incorporating housing information,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014).  doi: 10.1098/rsta.2013.0403.  Google Scholar

[30]

J. R. Zipkin, M. B. Short and A. L. Bertozzi, Cops on the dots in a mathematical model of urban crime and police response,, Discrete and Continuous Dynamical Systems-Series B, 19 (2014), 1479.  doi: 10.3934/dcdsb.2014.19.1479.  Google Scholar

[1]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks & Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[2]

Gabriella Bretti, Maya Briani, Emiliano Cristiani. An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 379-394. doi: 10.3934/dcdss.2014.7.379

[3]

Mary Luz Mouronte, Rosa María Benito. Structural analysis and traffic flow in the transport networks of Madrid. Networks & Heterogeneous Media, 2015, 10 (1) : 127-148. doi: 10.3934/nhm.2015.10.127

[4]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[5]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[6]

Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks & Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627

[7]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[8]

Maya Briani, Emiliano Cristiani. An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks & Heterogeneous Media, 2014, 9 (3) : 519-552. doi: 10.3934/nhm.2014.9.519

[9]

Lino J. Alvarez-Vázquez, Néstor García-Chan, Aurea Martínez, Miguel E. Vázquez-Méndez. Optimal control of urban air pollution related to traffic flow in road networks. Mathematical Control & Related Fields, 2018, 8 (1) : 177-193. doi: 10.3934/mcrf.2018008

[10]

Alberto Bressan, Khai T. Nguyen. Optima and equilibria for traffic flow on networks with backward propagating queues. Networks & Heterogeneous Media, 2015, 10 (4) : 717-748. doi: 10.3934/nhm.2015.10.717

[11]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic & Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[12]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[13]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

[14]

Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks & Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002

[15]

Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks & Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018

[16]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[17]

Yacine Chitour, Benedetto Piccoli. Traffic circles and timing of traffic lights for cars flow. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 599-630. doi: 10.3934/dcdsb.2005.5.599

[18]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[19]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[20]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]